Fast Fourier Computational Analysis of

the Optical Properties of Lead Sulphide Thin Film

Moses Eterigho Emetere and Uno Essang Uno

1Department of Physics, Covenant University, Ota, Nigeria
2Department of Physics, Federal University of Technology, Minna, Nigeria

*Corresponding author

Copyright © 2015 Moses Eterigho Emetere and Uno Essang Uno. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The physics of the absorbance of lead sulphide (PbS) is still unknown. The multiplication of experimental research all points to fact that the quantum confinement of PbS is dependent on the growing technique and dopant inherent properties. Hence, the evidence of quantum confinement impairment may not be visible but it contributes to the inefficiency of the PbS. A theoretical probe was done using the Fourier computational analysis of series of governing equations derived from text. The actualization of the quantum confinement impairment was successful- showing that the extreme size increase or decrease may not be advantageous for industrial use.

Keywords: lead sulphide thin film, optical properties, quantum confinement, impairment, chalcogenide, Fourier computational analysis

Introduction

In the 1930s, the lead sulphide was discovered. It works on material as infrared detector and has wide range of military application. In recent times, it is used as light emitting diodes, gas spectrometer, fabricating thin film integrated circuits and computer memories, wave guides switches modulators or laser detectors in integrated optics for measuring gas chemical specie in the laboratory and the lower atmosphere. Lead sulphide (PbS) is a semiconducting chalcogenide with direct bandgap of 0.41 eV and thus serves as a good transducer in many optical-electrical devices e.g. photovoltaic modules. The wide range of lead sulphide is pro-
portional to its industrial or laboratory preparation techniques. The industrial or laboratory preparation techniques include chemical bath deposition (CBD) method, spray pyrolysis, chemical vapour deposition (CVD) and magnetic sputtering (Bhatt et al., 2012; Uno et al., 2014a, b; Emetere et al., 2013; Devi et al., 2007; Obaid et al., 2012). Preparation technique has engendered the quantum size effect (Mahdi et al., 2012), positional doping effect (Uno et al., 2014) e.t.c. which is of interest to physicist. For example, the lead sulphide semiconductor nanocrystals showed an improved electronic band structure and gap when the quantum confinement is worked upon (Kang et al., 1997). Quantum confinement occurs in a semiconductor crystallite when its excitons are squeezed via its diameter reduction i.e. lower than the size of its exciton Bohr radius. Generally, there are weak and strong confinement regimes. Hence, the electronic and optical properties are highly tunable at this regime. During this state, continuous energy state may keep the band gap at its original energy except there is a change in size. Figure 1 expresses the expected quantum confinement in nanomaterials. PbS exhibit strong quantum size effects below excitonic Bohr radius (Tang et al., 2010). Its energy band gap (of its nanocrystals) can be tuned to anywhere between 0.41 (bulk) to 4 eV. The bandgap width of lead sulphide (PbS) is very sensitive to finite-size effects. Hence, it manifests high increase of optical absorption energy via its particulate size i.e. quantum dot or bulk PbS. Its optical bandgap in the PbS quantum dot increases up to 5.2 eV compared to the ‘bulk’ PbS value which is given as ~0.4 eV at room temperature (Hoffmann et al., 2000). In this paper, we propose via the Fourier computational analysis- the quantum confinement impairment initiated by the structure and interplane of the PbS.

Figure 1: Quantum confinement effects on the energy difference between energy states and band gap (Retrieved from wikipedia)
Theoretical background
The Debye-Scherer equation is used to determine the particle sizes of the samples. It is written as

\[
D = \frac{0.9\lambda}{B\cos\theta}
\]
(1)

Here, D (nm) is the average particle size, \(\lambda\) (nm) is the X-ray wavelength, \(\theta\) (degrees) is the diffraction angle, and B (nm) is the maximum peak width in half-height. The particle size determines the quantum yield (Emetere, 2013). Therefore the fluorescence quantum yield may be written as

\[
\phi_f = \frac{N_e(\lambda)}{N_a(\lambda)}
\]
(2)

Here, \(N_e(\lambda)\) is the number of the emitted photons, \(N_a(\lambda)\) is the number of the absorbed photon, and \(\phi_f\) is the fluorescence quantum yield. Experimentally, it is not easy to determine the absolute quantum yield because this method requires sophisticated instrumentation. However, few theoretical formulas had been propounded. The validity of such theories is still unclear because it did not adequately estimate the number of the emitted photons. Hence, part of the objective of this paper is to propound a new technique for estimating the quantum yield. From the theory of lasers (Emetere, 2014), \(J(\theta)\) which is emitted photon factor represents the optical transport of the combined multilayered material. It is represented as

\[
J(\theta) = \int_{\theta_1}^{\theta_2} \epsilon(\lambda, \theta) \cos \theta \sin \theta d\theta
\]
(3)

Here, \(\epsilon(\lambda, \theta)\) is the spectral directional emissivity. Using equation [1], equation [3] becomes

\[
J(\theta) = \frac{0.9\lambda}{BD} \int_{\theta_1}^{\theta_2} \epsilon(\lambda, \theta) \sin \theta d\theta
\]
(4)

Wilkins et al., (2010) investigated the X-ray spectral directional emissivity of the accretion disc in this Narrow Line Seyfert 1 galaxy 1H0707-495 which gave a value of 1.1255.

\[
J(\theta) = \frac{1.01295\lambda}{BD} \cos(\theta)
\]
(5)
Where $\cos(\theta) = \cos(\theta_2) - \cos(\theta_1)$. Let the first excited state calculated by Emetere (2013, 2014) be equal to the estimated number of absorbed photon i.e. $N_a(\lambda) = 2 - m \cdot \omega_1 M y T_1$

Here, $M_y = \text{Asin}(\omega t)$. $\omega_1 M y T_1 \gg 2$. Therefore, $N_a(\lambda) = -m \cdot \omega_1 \text{Asin}(\omega t) T_1$

Where $\alpha = \omega_1 \text{Asin}(\omega t)$ and $N_a(\lambda) \approx \alpha$

Here α is the absorbance. Then, on the condition that $\omega t = 0$

$$\phi_f = \frac{1.012953}{\omega_1 AB} \cos(\theta)$$ (6)

Virtual Experiment: The Fourier Computation Analysis of the Lead Sulphide

The virtual experiment was done using the MATLAB. First, we assumed the bulk, thin film and nanostructure PbS via the particle sizes of the samples. The experimentation is shown in figures 1a-h,
The experimentation mimics the intensity-theta graph of the X-ray diffraction (XRD). The XRD pattern was generated via equation (5). Two cases were considered to elaborate on the diffraction angle. First, the normal diffraction angle which shows the basic four diffraction peaks of the PbS i.e. (200), (220), (111) and (222). These normal diffraction were obtained at Theta= $\pi/2$, π, 2π and 3π. Here we propose that the (111) diffraction peak is on 2π (green color), while the (200) is on $\pi/2$ (sky blue color) because of its consistency in the simulations. Under

Figure 1a-h: mimicked Fourier analysis of XRD pattern. An evidence of quantum confinement shift with respect to PbS size.
strict assumptions, when the counting time (t) tends to unity i.e. \(t \rightarrow 1 \), \(\omega t = \theta \approx f \). Hence, the horizontal axis of the Figure 1a-h can be referred to diffraction angle. The vertical axis of Figure 1a-h via proportionality can be equated to relative intensity. Therefore, the simulations of Figure 1a-h can be considered a theoretical XRD. Figure 1a is possible at normal diffraction angle i.e. if the compound is homogenous. However, the focus of this study is the PbS which is a heterogeneous compound. Hence the diffraction angle in practical sense follows an exponential trend (see Figure 2). Therefore Figures 1b-h are results obtained from an experimentally valid exponential trend of the diffraction angle. Figures 1b,c,f,g are theoretical validation of changing quantum confinement due to Bauschinger effect.

Figure 2a-b: Experimental XRD showing varying interval between (111) and (200). Diagrams are obtained from Choudhury et al.,(2009) and Borhade et al., (2012).
Evidence of quantum confinement impairment can be seen in Figure 1d though not clear. However, the evidence of quantum confinement impairment is clearer in Figure 1e & h (see the red arrows over the diffraction peak-blue line). While Figure 1e shows that the first-kind quantum confinement impairment is between 27° and 32°. This kind is common with doped nanostructure XRD- see the experimental evidence shown in Figure 3.

The second kind of quantum confinement impairment can be seen in figure 1h between 18° and 62°. Though an experimental example was cited for this kind of quantum confinement impairment. Hence, the authors proposed this kind of occurrence in a super nanostructure PbS. This shows that the crystallography of the PbS is quite unique. In other words, PbS is potentially viable for predictive study and applications.

Conclusion

The PbS do not only decrease the density of localized states or improves the crystallinity of the films. Its impact on the quantum confinement of the sample as
shown in both theoretical and experimental XRD. However, the initiated Bauschinger effect-amongst other effects are responsible for thermal gradient truncation in some heterogeneous compounds. Quantum confinement impairment enables a sample to mimic several states. This may be advantageous for PbS industrial applications. Particulate size of a heterogeneous compound is directly proportional to the formations of various quantum confinements. When the results are compared with past research on PbS, the quantum confinement impairment are more evident. Hence, the preparation or growing technique of PbS defines the dimension of the quantum confinement impairment.

Acknowledgements. The author acknowledges their host institutions. This paper has no conflicting interest.

Reference

Fast Fourier computational analysis of optical properties

http://dx.doi.org/10.4028/www.scientific.net/ssp.209.111

Received: January 17, 2015; Published: March 9, 2015