Higher-order Changhee Numbers and Polynomials

Dae San Kim
Department of Mathematics
Sogang University
Seoul 121-742, Republic of Korea

Taekyun Kim
Department of Mathematics
Kwangwoon University
Seoul 139-701, Republic of Korea

Jong Jin Seo
Department of Applied Mathematics
Pukyong National University
Pusan, Republic of Korea

Sang-Hun Lee
Division of General Education
Kwangwoon University
Seoul 139-701, Republic of Korea

Copyright © 2014 Dae San Kim, Taekyun Kim, Jong Jin Seo and Sang-Hun Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we consider the higher-order Changhee numbers and polynomials which are derived from the fermionic p-adic integral on \mathbb{Z}_p and give some relations between higher-order Changhee polynomials and special polynomials.
1. INTRODUCTION

As is well known, the Euler polynomials of order $\alpha (\in \mathbb{N})$ are defined by the generating function to be

$$(\frac{2}{e^t + 1})^\alpha e^{\alpha t} = \sum_{n=0}^{\infty} E_n^{(\alpha)}(x) \frac{t^n}{n!}, \text{ (see [1-16])}.$$ (1.1)

When $x = 0$, $E_n^{(\alpha)} = E_n^{(\alpha)}(0)$ are called the Euler numbers of order α.

The Stirling number of the first kind is defined by

$$(x)_n = \sum_{l=0}^{n} S_1(n, l) x^l, \text{ (} n \in \mathbb{Z}_{\geq 0}, \text{ (see [5,6,7])}.$$ (1.2)

where $(x)_n = x(x-1) \cdots (x-n+1)$.

The Stirling number of the second kind is also defined by the generating function to be

$$(e^t - 1)^n = n! \sum_{l=n}^{\infty} S_2(l, n) \frac{t^l}{l!}, \text{ (} n \in \mathbb{Z}_{\geq 0} \text{).}$$ (1.3)

Let p be an odd prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p will denote the ring of p-adic integers, the field of p-adic numbers and the completion of algebraic closure of \mathbb{Q}_p. The p-adic norm $| \cdot |_p$ is normalized as $|p|_p = \frac{1}{p}$. Let $C(\mathbb{Z}_p)$ be the space of continuous functions on \mathbb{Z}_p. For $f \in C(\mathbb{Z}_p)$, the fermionic p-adic integral on \mathbb{Z}_p is defined by Kim to be

$$I_{-1}^{f} = \int_{\mathbb{Z}_p} f(x) d\mu_{-1}(x) = \lim_{N \rightarrow \infty} \sum_{x=0}^{p^{N-1}} f(x)(-1)^x, \text{ (see [9]).}$$ (1.4)

For $f_1(x) = f(x+1)$, we have

$$I_{-1}(f_1) + I_{-1}(f) = 2f(0).$$ (1.5)

As is well-known, the Changhee polynomials are defined by the generating function to be

$$\frac{2}{t+2}(1+t)^x = \sum_{n=0}^{\infty} Ch_n(x) \frac{t^n}{n!}, \text{ (see [6,8])}.$$ (1.6)

When $x = 0$, $Ch_n = Ch_n(0)$ are called the Changhee numbers. In this paper, we consider the higher-order Changhee numbers and polynomials which are derived from the multivariate fermionic p-adic integral on \mathbb{Z}_p and give some relations between higher-order Changhee polynomials and special polynomials.
2. Higher-order Changhee polynomials

For \(k \in \mathbb{N} \), let us define the Changhee numbers of the first kind with order \(k \) as follows:

\[
Ch^{(k)}_n = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (x_1 + \cdots + x_k)_n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k), \tag{2.1}
\]

where \(n \) is a nonnegative integer.

From (2.1), we can derive the generating function of \(Ch^{(k)}_n \) as follows:

\[
\sum_{n=0}^{\infty} \frac{Ch^{(k)}_n}{n!} t^n = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \sum_{n=0}^{\infty} \binom{x_1 + \cdots + x_k}{n} t^n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k)
\]

\[
= \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + t)^{x_1 + \cdots + x_k} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k). \tag{2.2}
\]

By (1.5), we easily see that

\[
\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + t)^{x_1 + \cdots + x_k} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k) = \left(\frac{2}{2 + t} \right)^k. \tag{2.3}
\]

From (2.2) and (2.3), we have

\[
\sum_{n=0}^{\infty} Ch^{(k)}_n \frac{t^n}{n!} = \left(\frac{2}{2 + t} \right)^k. \tag{2.4}
\]

It is easy to show that

\[
\left(\frac{2}{2 + t} \right)^k = \sum_{n=0}^{\infty} \left(\sum_{l_1 + \cdots + l_k = n} \binom{n}{l_1, \ldots, l_k} Ch_{l_1} \cdots Ch_{l_k} \right) \frac{t^n}{n!}. \tag{2.5}
\]

Thus, by (2.4) and (2.5), we get

\[
Ch^{(k)}_n = \sum_{l_1 + \cdots + l_k = n} \binom{n}{l_1, \ldots, l_k} Ch_{l_1} \cdots Ch_{l_k}. \tag{2.6}
\]

It is not difficult to show that

\[
\left(\frac{2}{2 + t} \right)^k = \sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^n \frac{1}{n!} n! \binom{k}{n} \frac{t^n}{n!}. \tag{2.7}
\]
From (2.4) and (2.7), we have
\[
2^n Ch_n^{(k)} = (-1)^n n! \binom{n + k - 1}{n} = (-1)^n (k + n - 1)_n
\]
\[
= (-1)^n \sum_{l=0}^{n} S_1(n, l)(k + n - 1)^l. \tag{2.8}
\]

Therefore, by (2.8), we obtain the following theorem.

Theorem 2.1. For \(n \geq 0 \), we have
\[
Ch_n^{(k)} = \left(-\frac{1}{2} \right) \sum_{l=0}^{n} S_1(n, l)(k + n - 1)^l.
\]

By (2.1), we get
\[
Ch_n^{(k)} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (x_1 + \cdots + x_k)n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k)
\]
\[
= \sum_{l=0}^{n} S_1(n, l) \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (x_1 + \cdots + x_k)^l d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k). \tag{2.9}
\]

Now, we observe that
\[
\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} e^{(x_1 + \cdots + x_k)t} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k) = \left(\frac{2}{e^t + 1} \right)^k = \sum_{n=0}^{\infty} E_n^{(k)} \frac{t^n}{n!}. \tag{2.10}
\]

By (2.9) and (2.10), we get
\[
Ch_n^{(k)} = \sum_{l=0}^{n} S_1(n, l) E_l^{(k)}. \tag{2.11}
\]

Therefore, by (2.12), we obtain the following theorem.

Theorem 2.2. For \(n \geq 0 \), we have
\[
Ch_n^{(k)} = \sum_{l=0}^{n} S_1(n, l) E_l^{(k)}. \tag{2.12}
\]

Replacing \(t \) by \(e^t - 1 \) in (2.4), we get
\[
\sum_{n=0}^{\infty} Ch_n^{(k)} \frac{(e^t - 1)^n}{n!} = \left(\frac{2}{e^t + 1} \right)^k = \sum_{m=0}^{\infty} E_m^{(k)} \frac{t^m}{m!}, \tag{2.13}
\]
and
\[
\sum_{n=0}^{\infty} Ch_n^{(k)} \frac{(e^t - 1)^n}{n!} = \sum_{m=0}^{\infty} \left(\sum_{n=0}^{m} Ch_n^{(k)} S_2(m, n) \right) \frac{t^m}{m!}. \tag{2.14}
\]
Therefore, by (2.13) and (2.14), we obtain the following theorem.

Theorem 2.3. For $n \geq 0$, we have

\[
E_m^{(k)} = \sum_{n=0}^{m} C_n^{(k)} S_2(m, n).
\]

Now, we consider the higher-order Changhee polynomials of the first kind as follows:

\[
C_n^{(k)}(x) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (x_1 + \cdots x_k + x)_n \mu(x_1) \cdots \mu(x_k).
\]

(2.15)

By (2.15), we get

\[
\sum_{n=0}^{\infty} C_n^{(k)}(x) \frac{x^n}{n!} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + t)^{x_1 + \cdots + x_k + x} \mu(x_1) \cdots \mu(x_k) = \left(\frac{2}{2 + t} \right)^k (1 + t)^x.
\]

(2.16)

From (2.4), we have

\[
\left(\frac{2}{2 + t} \right)^k (1 + t)^x = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \binom{n}{m} C_n^{(k)} \right) \frac{t^n}{n!}.
\]

(2.17)

By (2.16) and (2.17), we get

\[
C_n^{(k)}(x) = \sum_{m=0}^{n} \binom{x}{m} \frac{n!}{(n - m)!} C_n^{(k)} = \sum_{m=0}^{n} \left(\frac{x}{n - m} \right) \frac{n!}{m!} C_n^{(k)}.
\]

(2.18)

From (2.15), we have

\[
C_n^{(k)}(x) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (x_1 + \cdots x_k + x)_n \mu(x_1) \cdots \mu(x_k)
\]

\[
= \sum_{l=0}^{n} S_1(n, l) E_l^{(k)}(x).
\]

(2.19)

Therefore, by (2.19), we obtain the following corollary.

Corollary 2.4. For $n \geq 0$, we have

\[
C_n^{(k)}(x) = \sum_{l=0}^{n} S_1(n, l) E_l^{(k)}(x).
\]

In (2.16), by replacing t by $e^t - 1$, we get

\[
\sum_{n=0}^{\infty} C_n^{(k)}(x) \frac{(e^t - 1)^n}{n!} = \left(\frac{2}{e^t + 1} \right)^k e^t x = \sum_{m=0}^{\infty} E_n^{(k)}(x) \frac{t^m}{m!},
\]

(2.20)

and
Therefore, by (2.20) and (2.21), we obtain the following theorem.

Theorem 2.5. For \(m \geq 0 \), we have

\[
E_m^{(k)}(x) = \sum_{n=0}^{m} Ch_n^{(k)}(x) S_2(m, n).
\]

The rising factorial is defined by

\[
(x)^{(n)} = x(x + 1) \cdots (x + n - 1) = (-1)^{n}(-x)_n. \tag{2.22}
\]

Here, we define the Changhee numbers of the second kind with order \(k(\in \mathbb{N}) \) as follows:

\[
\hat{Ch}_n^{(k)} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (-x_1 - \cdots - x_k)_n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k). \tag{2.23}
\]

Thus, by (2.23), we get

\[
\hat{Ch}_n^{(k)} = \sum_{l=0}^{n} (-1)^l S_1(n, l) \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (x_1 + \cdots x_k)_l d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k)
\]

\[
= \sum_{l=0}^{n} (-1)^l S_1(n, l) E_l^{(k)}. \tag{2.24}
\]

The generating function of \(\hat{Ch}_n^{(k)} \) is given by

\[
\sum_{n=0}^{\infty} \frac{\hat{Ch}_n^{(k)} t^n}{n!} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + t)^{-x_1 - \cdots - x_k} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k)
\]

\[
= \left(\frac{2}{2 + t} \right)^k (1 + t)^k. \tag{2.25}
\]

Now, we observe that

\[
\left(\frac{2}{2 + t} \right)^k (1 + t)^k = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \binom{k}{m} Ch_{n-m}^{(k)} \frac{n!}{(n-m)!} \right) \frac{t^n}{n!}. \tag{2.26}
\]

Thus, by (2.25) and (2.26), we get

\[
\hat{Ch}_n^{(k)} = \sum_{m=0}^{n} m! \binom{k}{m} \binom{n}{m} Ch_{n-m}^{(k)}. \tag{2.27}
\]

Therefore, by (2.27), we obtain the following theorem.
Theorem 2.6. For $n \geq 0$, we have

$$\hat{Ch}_n^{(k)} = \sum_{m=0}^{n} m! \binom{k}{m} \binom{n}{m} Ch_{n-m}^{(k)}. \quad (2.28)$$

In (2.25), by replacing t by $e^t - 1$, we get

$$\sum_{n=0}^{\infty} \frac{\hat{Ch}_n^{(k)}(e^t - 1)^n}{n!} = \left(\frac{2}{e^t + 1} \right)^k = \sum_{m=0}^{\infty} E_m^{(k)}(k) \frac{t^m}{m!}, \quad (2.29)$$

and

$$\sum_{n=0}^{\infty} \frac{\hat{Ch}_n^{(k)}(e^t - 1)^n}{n!} = \sum_{m=0}^{\infty} \left(\sum_{n=0}^{m} \hat{Ch}_n^{(k)} S_2(m, n) \right) \frac{t^m}{m!}. \quad (2.30)$$

Therefore, by (2.29) and (2.30), we obtain the following theorem.

Theorem 2.7. For $m \geq 0$, we have

$$E_m^{(k)}(k) = \sum_{n=0}^{m} \hat{Ch}_n^{(k)} S_2(m, n).$$

Now, we consider the Changhee polynomials of the second kind with order $k (\in \mathbb{N})$ as follows:

$$\hat{Ch}_n^{(k)}(x) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (-x_1 - \cdots - x_k + x)_n d\mu_1(x_1) \cdots d\mu_1(x_k). \quad (2.31)$$

From (2.25) and (2.31), we have

$$\sum_{n=0}^{\infty} \frac{\hat{Ch}_n^{(k)}(x)^{tn}}{n!} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + t)^{-x_1 - \cdots - x_k + x} d\mu_1(x_1) \cdots d\mu_1(x_k)$$

$$= (1 + t)^{x+k} \left(\frac{2}{2 + t} \right)^k. \quad (2.32)$$

We observe that

$$\left(\frac{2}{2 + t} \right)^k (1 + t)^{x+k} = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} m! \binom{x}{m} \binom{n}{m} Ch_{n-m}^{(k)} \right) \frac{t^n}{n!}. \quad (2.33)$$

Thus, by (2.32) and (2.33), we obtain the following theorem.

Theorem 2.8. For $m \geq 0$, we have

$$\hat{Ch}_n^{(k)}(x) = \sum_{m=0}^{n} m! \binom{x}{m} \binom{n}{m} Ch_{n-m}^{(k)}.$$
From (2.31), we have
\[\hat{C}_n^{(k)}(x) = \sum_{l=0}^{n} S_1(n, l)(-1)^l \int_{\mathbb{R}^p} \cdots \int_{\mathbb{R}^p} (x_1 + \cdots + x_k - x)^l d\mu_1(x_1) \cdots d\mu_1(x_k) \]
\[= \sum_{l=0}^{n} S_1(n, l)(-1)^l E_l^{(k)}(-x). \] (2.34)

In (2.32), by replacing \(t \) by \(e^t - 1 \), we get
\[\sum_{n=0}^{\infty} \widehat{C}_n^{(k)}(x) \frac{(e^t - 1)^n}{n!} = e^{(x+k)t} \left(\frac{2}{e^t + 1} \right)^k = \sum_{m=0}^{\infty} E_m^{(k)}(x+k) \frac{t^m}{m!}, \] (2.35)
and
\[\sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{1} (e^t - 1)^n = \sum_{m=0}^{\infty} \left(\sum_{n=0}^{m} \hat{C}_n^{(k)} S_m(n, n) \right) \frac{t^m}{m!}. \] (2.36)

Therefore, by (2.35) and (2.36), we obtain the following theorem.

Theorem 2.9. For \(m \geq 0 \), we have
\[E_m^{(k)}(x+k) = \sum_{n=0}^{m} \hat{C}_n^{(k)} S_m(n, n). \]

Now, we observe that
\[(-1)^n \frac{\hat{C}_n^{(k)}(x)}{n!} = (-1)^n \int_{\mathbb{R}^p} \cdots \int_{\mathbb{R}^p} \left(-\frac{(x_1 + \cdots + x_k + x)}{n} \right) d\mu_1(x_1) \cdots d\mu_1(x_k) \]
\[= \int_{\mathbb{R}^p} \cdots \int_{\mathbb{R}^p} \left(\frac{x_1 + \cdots + x_k - x + n - 1}{n} \right) d\mu_1(x_1) \cdots d\mu_1(x_k) \]
\[= \sum_{m=0}^{n} \binom{n-1}{n-m} \frac{1}{m!} C_l^{(k)}(-x) = \sum_{m=1}^{n} \frac{(n-m)}{m!} C_l^{(k)}(-x). \] (2.37)

Therefore, by (2.37), we obtain the following theorem.

Theorem 2.10. For \(n \in \mathbb{N} \), we have
\[(-1)^n \frac{\hat{C}_n^{(k)}(x)}{n!} = \sum_{m=1}^{n} \frac{(n-m)}{m!} C_l^{(k)}(-x). \]
By (2.15), we get

\[
(-1)^n \frac{C_{m_n}^{(k)}(x)}{n!} = (-1)^n \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\frac{x_1 + \cdots + x_k + x}{n} \right) d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k)
\]

\[
= \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(-x_1 - x_2 - \cdots - x_k - x + n - 1 \right) d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_k)
\]

\[
= \sum_{m=0}^{n} \frac{(n-1)}{m!} \hat{h}_m^{(k)}(-x) = \sum_{m=1}^{n} \frac{(n-1)}{m!} \hat{h}_m^{(k)}(-x).
\]

(2.38)

Therefore, by (2.38), we obtain the following theorem.

Theorem 2.11. For \(n \in \mathbb{N} \), we have

\[
(-1)^n \frac{\hat{C}_m^{(k)}(x)}{n!} = \sum_{m=1}^{n} \frac{(n-1)}{m!} \hat{h}_m^{(k)}(-x).
\]

REFERENCES

Received: March 1, 2014