The SW-RPA Self-Diffusion Coefficient
of Liquid Potassium

Arkadiy B. Finkel’shtein

Ural Federal University, Mira st. 19, 620002, Ekaterinburg, Russia

Copyright © 2014 Arkadiy B. Finkel’shtein. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The self-diffusion coefficient of the liquid potassium at $T=337K$ is calculated in the square-well model within the random phase approximation. A good agreement with available experimental data is obtained.

Keywords: Square-well model, random phase approximation, self-diffusion coefficient, liquid metal

In our previous works [1, 2] the square-well (SW) model within the random phase approximation with the hard-sphere reference system had been successfully applied to study the structure factor, $S(q)$, and the self-diffusion coefficient, $D = (\beta \xi)^{-1}$ (where ξ is the friction coefficient, $\beta = (k_B T)^{-1}$, k_B - Boltzmann constant, T - temperature), of liquid Na near the melting point. Here, this approach is used to calculate D of the liquid K at the same condition.

The Davis-Palyvos [3] approach is used for this aim:

\[\xi = \xi_h + \xi_s + \xi_{SH}, \]

where ξ_h and ξ_s are the contributions due to the hard and soft part of the pair interaction, respectively, ξ_{SH} - the cross-correlation term:

\[\xi_h = \frac{8}{3} \rho \sigma^2 g(\sigma)(\pi M / \beta)^{1/2}, \]

\[\xi_s = -\frac{(\beta \pi M)^{1/2}}{12 \pi^2} \int_0^{\infty} [S(q) - 1 - 3] \phi(q) q^2 dq, \]

\[\xi_{SH} = -\frac{1}{3} \rho g(\sigma)(\beta M / \pi)^{1/2} \int_0^{\infty} [q \cos(q \sigma) - \sin(q \sigma)] \phi(q) dq, \]
where ρ is the mean atomic density (taken here from [4]), σ - hard-core diameter, $g(r)$ - radial distribution function, M - atomic mass, $\phi(q)$ - Fourier transform of the soft part of the pair potential. The SW model parameters for liquid K are defined by fitting the first peak of $S(q)$ with respect to the experimental one [5].

Calculated D is compared with two experimental results (Table 1). Like the case of liquid Na [2], it can be seen that the SW model gives slightly overstated value of D in comparison with experimental ones.

<table>
<thead>
<tr>
<th>$D \cdot 10^{-9}$ (m2/s)</th>
<th>SW</th>
<th>Experiment [6]</th>
<th>Experiment [7]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.54</td>
<td>3.76</td>
<td>3.59</td>
</tr>
</tbody>
</table>

Table 1. Self-diffusion coefficient of liquid K at $T = 337$ K.

References

Received: February 28, 2014