Account of Non-Diagonal d-d-Electron Couplings in Co-Ni Liquid Alloy

Nikolay Dubinin1,2

1 Ural Federal University, Mira st. 19, 620002 Ekaterinburg, Russia
2 Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Amundsen st. 101, 620016 Ekaterinburg, Russia

Copyright © 2014 Nikolay Dubinin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The partial Wills-Harrison effective pair potentials in liquid equiatomic Co-Ni alloy are considered. It is shown that the account of the non-diagonal d-d couplings between electrons leads to similar changes in characteristics of the pair-potential first minimum as for Fe-Co and Fe-Ni equiatomic alloys.

Keywords: Liquid transition-metal alloy, Wills-Harrison model, d-state coupling

The Wills-Harrison (WH) [1] partial effective pair potentials, $\varphi_{\text{WH}}(r)$, between atoms Co and Ni in equiatomic Co-Ni alloy at $T=1873$K are calculated at different values of the suggested in [2] probability p that not only diagonal d-d couplings are possible at condition that all d-d couplings (diagonal and non-diagonal) are equiprobable in this case. This approach was extended to binary alloys in [3] and applied to equiatomic Fe-Co and Fe-Ni liquid alloys in [4] and [5], respectively. All input data are listed in Table 1. The partial coordination numbers are taken equal to 12.

Table 1. Input data for calculation

<table>
<thead>
<tr>
<th></th>
<th>r_{di} (a.u.)</th>
<th>z_{di}</th>
<th>z_{zi}</th>
<th>R_{Ci} (a.u.)</th>
<th>a_i (a.u.)</th>
<th>Ω (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>1.437</td>
<td>1.4</td>
<td>7.6</td>
<td>1.64</td>
<td>0.393</td>
<td>85.85</td>
</tr>
<tr>
<td>Ni</td>
<td>1.342</td>
<td>1.4</td>
<td>8.6</td>
<td>1.03</td>
<td>0.207</td>
<td>85.24</td>
</tr>
</tbody>
</table>

Results obtained (Fig. 1) are similar to that obtained earlier for Fe-Co [4] and Fe-Ni [5] equiatomic alloys.
Figure 1. \(\varphi_{\text{WHT}}(r) \) between atoms Co and Ni in liquid equiatomic Co-Ni alloy (\(p = 0 \) – solid line; \(p = 0.5 \) – dotted line; \(p = 1 \) – dashed-dotted line).

Acknowledgments

This study is supported by the Program of UD RAS (project No 12-T-3-1022).

References

Received: June 28, 2013