An Application of p-Adic Convolution
Associated with Daehee Numbers

Dae San Kim
Department of Mathematics
Sogang University
Seoul 121-742, Republic of Korea

Yu Seon Jang
Department of Applied Mathematics
Kangnam University
Yongin 446-702, Republic of Korea

Taekyun Kim
Department of Mathematics
Kwangwoon University
Seoul 139-701, Republic of Korea

Jong Jin Seo
Department of Applied Mathematics
Pukyong National University
Pusan 698-737, Republic of Korea

Copyright © 2014 Dae San Kim, Yu Seon Jang, Taekyun Kim and Jong Jin Seo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
In this paper, we consider the applications of p-adic convolution associated with Daehee numbers and give some relations between Daehee numbers and Bernoulli numbers.

1. Introduction

Let p be a fixed prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p will denote the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_p. Let $C(\mathbb{Z}_p, \mathbb{C}_p)$, $UD(\mathbb{Z}_p, \mathbb{C}_p)$ denote the space of all continuous functions on \mathbb{Z}_p with values in \mathbb{C}_p and the space of all uniformly differentiable functions on \mathbb{Z}_p with values in \mathbb{C}_p. Let $|·|_p$ be the normalized p-adic absolute value with $|p|_p = 1/p$. As is known, the Daehee numbers are defined by the generating function to be

\[\log(1 + t) \sum_{n=0}^{\infty} D_n t^n, \text{ (see [1])} \]

(1)

For $f \in UD(\mathbb{Z}_p, \mathbb{C}_p)$, we have an integral $I_0(f)$ with respect to the so called invariant measure μ_0:

\[I_0(f) = \int_{\mathbb{Z}_p} f(x) d\mu_0(x) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x), \text{ (see [2–3])} \]

(2)

Let C_{p^n} be the cyclic group consisting of all p^n-th roots of unity in \mathbb{C}_p for any $n \geq 0$ and T_p be the direct limit of C_{p^n} with respect to the natural morphism, hence T_p is the union of all C_{p^n} with discrete topology. The Fourier transform \hat{f}_w is given by

\[\hat{f}_w = I_0(f \phi_w), \text{ (see [7, 8])}, \]

(3)

where ϕ_w denotes the uniformly differentiable function on \mathbb{Z}_p belonging to $w \in T_p$ defined by $\phi_w(x) = w^x$.

Now, for any $f, g \in UD(\mathbb{Z}_p)$ we define their convolution $f * g$, due to Woodcock, as follows:

\[f * g(x) = \sum_{w} \hat{f}_w \hat{g}_w \phi_{w^{-1}}(x), \text{ (see [7])}. \]

(4)

Then, we have $f * g \in UD(\mathbb{Z}_p, \mathbb{C}_p)$ and \(\left(f * g \right)_w \hat{=} \hat{f}_w \hat{g}_w \). Another convolution \otimes is induced by $*$ above: $f' \otimes g' = -(f * g)'$ for $f, g \in UD(\mathbb{Z}_p, \mathbb{C}_p)$. Thus, we note that

\[f \otimes g(n) = \sum_{k=0}^{n} f(k)g(n-k), \text{ (see [7, 8])}. \]

(5)
An application of p-adic convolution

From (2), we have

$$I_0(f_1) - I_0(f) = f'(0), \text{ (see [2]),}$$

(6)

where $f_1(x) = f(x + 1)$. By (6), we easily get

$$\int_{\mathbb{Z}_p} e^{xt}d\mu_0(x) = \frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}, \text{ (see [1, 2, 3]),}$$

(7)

where B_n are the Bernoulli numbers. Thus, by (7), we have

$$\hat{Z}^{\text{ext}}d\mu_0(x) = \frac{t - 1}{t} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}, \text{ (see [1, 2, 3]),}$$

(8)

From (1) and (6), we can derive the following equation:

$$\sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} (x)_n d\mu_0(x) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} (1 + t)^n d\mu_0(x) = \frac{\log(1 + t)}{t},$$

where $t \in \mathbb{C}_p$ with $|t|_p < p^{-1/(p-1)}$ and $(x)_n = x(x - 1) \cdots (x - n + 1)$. By (8), we get

$$D_n = \int_{\mathbb{Z}_p} (x)_n d\mu_0(x) = \sum_{\ell=0}^{n} S_1(n, \ell) B_\ell, \text{ (n \geq 0),}$$

(9)

where $S_1(n, \ell)$ is the Stirling number of the first kind. C. F. Woodcock proved the following results:

$$(f \otimes g)'(z) = f \otimes g'(z) + f' \otimes g(z) + f \ast g(z)$$

(10)

and

$$f \ast g(z) = I_0(x)(f(x)g(z - x)) - f \otimes g'(z), \text{ (see [7]),}$$

(11)

where $I_0(x)$ means the integration with respect to the variable x. Let $A_{m,n} = I_0(x)(z^m \otimes z^{n-1})$. Then, by (10), we get

$$A_{m,n} = \frac{1}{n} \sum_{i=1}^{n} \binom{n}{i} (-1)^i B_{n-i} B_{i+m}, \text{ (m, n \in \mathbb{N}).}$$

(12)

Note that $A_{m,n} = A_{n-1,m+1}$, (see [7, 8]). By (12), we get

$$\sum_{k=2}^{n-2} \binom{n}{k} (-1)^k B_k B_{n-k} = -(n + 1) B_n, \text{ (n \geq 4).}$$

In this paper, we study the applications of p-adic convolution associated with Daehee numbers and give some relations between Daehee numbers and Bernoulli numbers.
2. An application of p-adic convolution associated with Daehee numbers

By (5), we get
\[f \otimes g(0) = f(0)g(0). \] (13)

Let us assume that $g(0) = 0$. From (10) and (13), we have
\[(f \otimes g)'(0) = f \otimes g'(0) + f' \otimes g(0) + f \ast g(0) \]
\[= f(0)g'(0) + f'(0)g(0) + f \ast g(0) \] (14)
\[= f(0)g'(0) + f \ast g(0). \]

Let us define the difference operator Δ by $\Delta f(x) = f(x + 1) - f(x)$. Then, by (14) and (6), we get
\[I_0((f \otimes \Delta g) = (f \otimes g)'(0) \]
\[= f(0)g'(0) + f \ast g(0) \]
\[= f(0)g'(0) + I_0(fg_-) - f \otimes g'(0) \]
\[= f(0)g'(0) - f(0)g'(0) + I_0(fg_-) \]
\[= I_0(fg_-), \] (15)
where $g_-(x) = g(-x)$. Let us take $f(z) = (z)_m, g(z) = (z)_n, (m, n \in \mathbb{N})$. Then, by (15), we get
\[I_0((z)_m \otimes ((z + 1)_n - (z)_n)) = I_0((z)_m(z)_n) \]
\[= (-1)^n I_0((z)_m z^n), \] (16)
where $z^n = z(z + 1) \cdots (z + n - 1)$. The unsigned Stirling number is defined by
\[z^n = z(z + 1) \cdots (z + n - 1) = \sum_{\ell_1=0}^{n} \left[\begin{array}{c} n \\ \ell_1 \end{array} \right] x^{\ell_1}. \] (17)

By (17), we get
\[I_0((z)_m(z)_n) = (-1)^n I_0((z)_m z^n) \]
\[= (-1)^n \sum_{\ell_1=0}^{m} S(m, \ell_1) \sum_{\ell_2=0}^{n} \left[\begin{array}{c} n \\ \ell_2 \end{array} \right] \int_{\mathbb{Z}_p} z^{\ell_1+\ell_2} d\mu_0(z) \]
\[= \sum_{\ell_1=0}^{m} \sum_{\ell_2=0}^{n} (-1)^n S_1(m, \ell_1) \left[\begin{array}{c} n \\ \ell_2 \end{array} \right] B_{\ell_1+\ell_2}, \] (18)

Now, we observe that
\[(z + 1)_n - (x)_n = (z + 1)z(z - 1) \cdots (z - n + 2) - z(z - 1) \cdots (z - n + 1) \]
\[= nz(z - 1) \cdots (z - n + 2) = n(z)_{n-1}. \] (19)
An application of p-adic convolution

By (19), we get
\[I_0((z)_m \otimes ((z + 1)_n - (z)_n)) = n I_0((z)_m \otimes (z)_{n-1}). \tag{20} \]

Let us define the sequence $T_{m,n}$ as follows:
\[T_{m,n} = I_0((z)_m \otimes (z)_{n-1}). \tag{21} \]

From (21), we have
\[T_{m,n} = T_{n-1,m+1}, \quad (m, n \in \mathbb{N}). \tag{22} \]

Therefore, by (16), (18) and (21), we obtain the following theorem.

Theorem 2.1. For $m, n \geq 1$, we have
\[T_{m,n} = \frac{1}{n} \sum_{\ell_1=0}^{m} \sum_{\ell_2=0}^{n} (-1)^n S_1(m, \ell_1) \left[\frac{n}{\ell_2} \right] B_{\ell_1+\ell_2}, \]
and
\[T_{m,n} = T_{n-1,m+1}. \]

From Theorem 2.1, we have
\[T_{0,n} = T_{n-1,1}, \quad (n \in \mathbb{N}). \tag{23} \]

Thus, (23), we have
\[\frac{1}{n} \sum_{\ell=0}^{n-1} (-1)^{n-1} \left[\frac{n}{\ell} \right] B_\ell = \sum_{\ell=0}^{n-1} S_1(n-1, \ell) B_{\ell+1}. \]

From (12), we have
\[I^{(z)}_0(f * g(z)) = I^{(z)}_0(I^{(x)}_0(f(x)g(z-x)) - I^{(z)}_0(f * g'(z)). \tag{24} \]

Thus, by (24), we get
\[I^{(z)}_0(f)I^{(z)}_0(g) = I^{(z)}_0(I^{(x)}_0(f(x)g(z-x)) - I^{(z)}_0(f \otimes g'(z)). \tag{25} \]

Let us take $f(z) = (z)_m$ and $g(z) = (z)_n$, $(m, n \in \mathbb{N})$. Then, by (8) and (9), (25), we get
\[D_m D_n = \int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} (z)_m(z-x)_n d\mu_0(z) - \int_{\mathbb{Z}_p} (z)_m \otimes (z)'_n d\mu_0(z). \tag{26} \]

Let
\[K_{m,n} = \int_{\mathbb{Z}_p} (z)_m \otimes (z)'_n d\mu_0(z), \tag{27} \]
where \((z)_n' = d(z)_n/dz = \sum_{\ell=1}^n S_1(n, \ell)\ell z^{\ell-1}\). Now, we observe that
\[
\int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} (x)_m(z-x)_n d\mu_0(z)
= \sum_{\ell_1=0}^m S_1(m, \ell_1) \sum_{\ell_2=0}^n S_1(n, \ell_2) \int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} x^{\ell_1}(z-x)^{\ell_2} d\mu_0(x) d\mu_0(z)
\]
\[
= \sum_{\ell_1=0}^m \sum_{\ell_2=0}^n S_2(m, \ell_1) S_1(n, \ell_2) \sum_{i=0}^{-\ell_2} \binom{\ell_2}{i} (-1)^i \int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} x^{\ell_1+i} z^{\ell_2-i} d\mu_0(x) d\mu_0(z)
\]
\[
= \sum_{\ell_1=0}^m \sum_{\ell_2=0}^n S_1(m, \ell_1) S_1(n, \ell_2) \sum_{i=0}^{-\ell_2} \binom{\ell_2}{i} (-1)^i B_{\ell_1+i} B_{\ell_2-i}
\]
\[
= D_m D_n + \sum_{\ell_1=0}^m \sum_{\ell_2=0}^n \sum_{i=1}^{\ell_2} S_1(m, \ell_1) S_1(n, \ell_2) \binom{\ell_2}{i} (-1)^i B_{\ell_1+i} B_{\ell_2-i}
\]
and
\[
\int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} (x)_m(z-x)_n d\mu_0(z) = m!n! \int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} \binom{x}{m} \binom{z-x}{n} d\mu_0(x) d\mu_0(z).
\]
Therefore, by (28) and (29), we obtain the following theorem.

Theorem 2.2. For \(m, n \in \mathbb{N}\), we have
\[
\int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} \binom{x}{m} \binom{z-x}{n} d\mu_0(x) d\mu_0(z)
= \frac{D_m D_n}{m!n!} + \frac{1}{m!n!} \sum_{\ell_1=0}^m \sum_{\ell_2=0}^n \sum_{i=1}^{\ell_2} S_1(m, \ell_1) S_1(n, \ell_2) \binom{\ell_2}{i} (-1)^i B_{\ell_1+i} B_{\ell_2-i}.
\]
In particular,
\[
K_{m,n} = \sum_{\ell_1=0}^m \sum_{\ell_2=0}^n \sum_{i=1}^{\ell_2} S_1(m, \ell_1) S_1(n, \ell_2) \binom{\ell_2}{i} (-1)^i B_{\ell_1+i} B_{\ell_2-i}
\]
\[
= \sum_{\ell_1=0}^m \sum_{\ell_2=0}^n S_1(m, \ell_1) S_1(n, \ell_2) \ell_2 A_{\ell_1, \ell_2}.
\]

References

An application of p-adic convolution

Received: July 5, 2014