Correlation Function of Gaussian-Sine Asymmetric Potential by Shooting Method

Artit Hutem1,*, Surachest Iamsamang2

1. Physics Division, Faculty of Science and Technology Phetchabun Rajabhat University, Phetchabun, Thailand 67000 *Corresponding author

2. Biology Program, Faculty of Science and Technology Phetchabun Rajabhat University, Phetchabun, Thailand 67000

Copyright © 2014 Artit Hutem and Surachest Iamsamang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We show that the idea of program of evaluate correlation function of atomic density for the harmonics oscillator Gaussian-Sine asymmetric potential from the numerical shooting method of this problem. Compare the correlation function the theoretical (NSM[1] see figure (3)) for particle into harmonics oscillator Gaussian-Sine asymmetric potential and the intensity correlation experiment by reference[3]. We show that the intensity of atomic density fluctuation (\(\delta \eta(x) = \tilde{\eta}(x) - \tilde{\vartheta}(x)\)) in harmonics oscillator Gaussian-Sine asymmetric potential by NSM (see figure (4)).

Subject Classification: 03.65.Ge, 03.65.Aa, 03.65.Fd

Keywords: correlation function, atomic density fluctuation

1 Introduction

More often than not, it is impossible to find exact solution to the eigenvalue problem of the Hamiltonian. To solve general problems, one must resort
to approximation methods. A variety of such methods have been developed, and each has its own area of applicability. There exist several means to study them, e.g. Wentzel-Kramers-Brillouin, perturbation, the variational method, the analytical transfer matrix method and numerical shooting method (NSM).

![Figure 1: The harmonics oscillator potential is perturbed by Gaussian-Sine asymmetric potential.](image)

2 The Schrödinger Equation in Finite Difference Formula

The potential energy for the harmonics oscillator Gaussian-Sine asymmetric is of the form show in figure(1) and is given by

\[
V_{GSA}(x) = \frac{1}{2} \mu \omega^2 x^2 + cx \cos(dx) + ae^{-bx^2} \sin^2(dx).
\] (1)

The hamitonian of the harmonics oscillator Gaussian-Sine asymmetric potential is

\[
\hat{H}_{GSA} = \left(-\frac{\hbar^2}{2\mu} \frac{d^2}{dx^2} + \frac{1}{2} \mu \omega^2 x^2 \right) + \left(cx \cos(dx) + ae^{-bx^2} \sin^2(dx) \right).
\] (2)

If \(\varphi_n(x) \) represents the wave-function of the time-independent Schrödinger equation, we obtain

\[
\frac{d^2 \varphi_n(x)}{dx^2} + \frac{2\mu}{\hbar^2} \left(E_n - V_{GSA}(x) \right) \varphi_n(x) = 0,
\] (3)
Substituting the harmonics oscillator Gaussian-Sine asymmetric potential from equation (1) and \(\xi \equiv \sqrt{\frac{\mu}{\hbar}} x \), \(\xi^2 = \frac{\mu \omega}{\hbar} x^2 \), \(\frac{d^2}{d\xi^2} = \frac{\mu \omega}{\hbar} \frac{d^2}{dx^2} \), \(\varepsilon = \frac{2\mu}{\hbar} \) and \(\hbar = \mu = \omega = 1 \) into equation (3) leads to the equation

\[
\frac{d^2 \varphi_n(\xi)}{d\xi^2} + \left(\varepsilon - \xi^2 - 2c\xi \cos(d\xi) - 2ae^{-bk^2} \sin^2(d\xi) \right) \varphi_n(\xi) = 0. \tag{4}
\]

We can find the numerical solution equation (4) by dividing \(\xi \) into many small segments, each of \(\Delta \xi \) in length. The second-derivative for the first term of equation (4) can be approximated in finite difference form as follows

\[
\frac{d^2 \varphi_n(\xi)}{d\xi^2} \approx \frac{\varphi_{i+1} + \varphi_{i-1} - 2\varphi_i}{(\Delta \xi)^2}. \tag{5}
\]

We can obtain the form of the time-independent Schrödinger equation in terms of finite difference by substituting equation (5) into equation (4), we obtain

\[
\varphi_{i+1} = 2\varphi_i - \varphi_{i-1} - (\Delta \xi)^2 \left(\varepsilon - \xi^2 - 2c\xi \cos(d\xi) - 2ae^{-bk^2} \sin^2(d\xi) \right) \varphi_i; \tag{6}
\]

where \(\xi_{i+1} = \Delta \xi + \xi_i \). The special potential given by harmonics oscillator Gaussian-Sine asymmetric potential has been used in evaluate equation (6) in the section(3)
3 Numerical Shooting Method and Results

We construe the new variable for using in calculating the ground-state energy eigenvalue, wave-function and the time-independent correlation function of the harmonics oscillator Gaussian-Sine asymmetric potential.

1. ξ_{min} is the start position in the analysis range.

2. ξ_{max} is the ultimate position in the analysis range.

3. ξ is any position in the analysis range.

4. nn is a number of very small bars in the analysis range.

5. $\Delta\xi = \frac{\xi_{\text{max}} - \xi_{\text{min}}}{nn}$ is the length of very small bars so that

Logic of the numerical shooting method evaluation of energy eigenvalue, eigenfunction and time-independent correlation function for the harmonics oscillator Gaussian-Sine asymmetric potential.

- Input values ξ_{min} and ξ_{max} in mathematica program for the harmonics oscillator Gaussian-Sine asymmetric potential and input equation (6) into mathematica program.
Figure 4: Schematic representation for behavior of atomic density fluctuation \(\delta \eta(x) = \bar{\eta}(x) - \bar{\vartheta}(x) \).

- Input the period amount.

- Plot the wave-function is normalized by the graph related to \(i \).

- Plot the probability the average atomic density \(\bar{\eta}(x) = |\varphi(x)|^2 \) for the harmonics oscillator Gaussian-Sine asymmetric potential.

- Input values \(\xi_{\text{min}} \) and \(\xi_{\text{max}} \) in the mathematica program for the harmonics oscillator potential.

- Input equation \(\varphi_{i+1} = 2\varphi_i - \varphi_{i-1} - (\Delta \xi)^2 (\varepsilon - \xi^2) \varphi_i \) into the mathematica program for the harmonics oscillator potential.

- For example, if \(|\varphi(x)| \leq 10^{-6} \), we stop the evaluation and accept the final energy as the numerical solution.

- Plot the wave-function is normalized for the harmonics oscillator potential by the graph related to \(i \).

- Plot the probability the average atomic density \(\bar{\vartheta}(x) = |\varphi(x)|^2 \) for the harmonics oscillator potential.
• Plot the density fluctuation $\delta \eta(x) = \tilde{\eta}(x) - \tilde{\vartheta}(x)$ [2] by the graph related to i.

• Plot the time-independent correlation function $C(s) = \frac{\delta \eta(x) \delta \eta(x')}{\eta(x) \eta(x')}$ when $s = |x - x'|$ is a distance between point x and x' [2].

4 Conclusion

Figure (2)(a-f) if the values of the $b = \frac{1}{\text{width}}$ and c parameter has increase, the energy eigenvalues(E_n) for the ground-state has lessen and figure (3)(a-c) the values of the correlation function($C(S)$)(part of positive) has lessen but figure (3)(d-f) the values of the correlation function($C(S)$)(part of positive) has supplement. From figure (4)(a-f) if the values of the d and c parameter has increase, the atomic density fluctuation $\delta \eta(x)$ has lessen.

Acknowledgements

Artit Hutem wishes to thank the Institute Research and Development Physics Division, Faculty of Science and Technology, Phetchabun Rajabhat University, Thailand.

References

Received: June 1, 2014