Evaluate Correlation Function, Wave Function
and Energy of the Harmonics Oscillator
Hyperbolic Secant-Cosine Rational Asymmetric
Potential via Numerical Shooting Method

Artit Hutem

Physics Division, Faculty of Science and Technology
Phetchabun Rajabhat University, Phetchabun, Thailand 67000

Copyright © 2014 Artit Hutem. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we develop a simple numerical method for evaluating the correlation function of the atomic density fluctuation under the harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential. Instead of using the 6-point kernel, averaged over disorder, we use the numerical shooting method (NSM) for solving the Schrödinger equation of quantum mechanics system with hyperbolic Secant-Cosine rational asymmetric potential. Since our approach does not use complicated formulas, it requires much less computational effort when compared to the Green functions techniques[9].

Subject Classification: 03.65.Ge, 03.65.Aa, 03.65.Fd

Keywords: correlation function, wave-function, numerical shooting method

1 Introduction

Most problems encountered in quantum mechanics cannot be solved exactly. Exact solutions of the Schrödinger equation exist only for a few idealized systems. To solve general problems, one must resort to approximation methods.
A variety of such methods have been developed, and each has its own area of applicability. There exist several means to study them, e.g. the variational method\[1\], function analysis\[2\], the eigenvalue moment method\[3\], the analytical transfer matrix method\[4\][5][6] and numerical shooting method\[7\][12]. In this paper we consider approximation methods that deal with stationary states corresponding to time-independent Hamiltonian. To study problem of stationary states, we focus on one approximation method: numerical shooting method useful evaluate wave-function and time-independent correlation function of a particle around of attraction by the harmonics oscillator with hyperbolic Secant-Cosine rational asymmetric potential.

Boris Shapiro and Peter Henseler 2008 \[8\] use define the disorder-induced intensity-intensity correlation function, \(C_\omega(\mathbf{r}, \mathbf{r}') = \left| \psi_\omega^*(\mathbf{r})\psi_\omega(\mathbf{r}') \right|^2\) was calculate the normalized density-density correlation function of the Bose-Einstein Condensate for Fermi gas. N.Cherroret and S.E.Skipetrov 2008 \[9\] show that the average atomic density \(n(\mathbf{r}, t) = \left| \psi(\mathbf{r}, t) \right|^2\) as a function of time. The density reaches a maximum at the arrival time \(t_{arrival} \simeq 2z^2/D_\mu\), where \(D_\mu\) is the diffusion coefficient in a random potential.

The scheme of the article is as follows. In Sec. 2 we write the basic time-independent Schrödinger equation in term of finite difference and the harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential in terms of the new variable is given by

\[
\psi_{i+1} = 2\psi_i - \psi_{i-1} - (\Delta \xi)^2 (\varepsilon - \xi^2 - \beta |\xi| \sin(10\xi) - \frac{\lambda(\text{sech}(\mu \xi^2))^2 (\cos(30\xi^2))^2}{1 + g\xi^2}) \psi_i
\]

where \(V_h(\xi) = \beta |\xi| \sin(10\xi) + \frac{\lambda(\text{sech}(\mu \xi^2))^2 (\cos(30\xi^2))^2}{1 + g\xi^2}\) is the hyperbolic Secant-Cosine rational asymmetric potential. In Sec. 3 we show that the idea write of program of evaluate energy eigenvalue wave-function and correlation function of atomic density for the hyperbolic Secant-Cosine rational asymmetric potential via the numerical shooting method\[11\][12]. In Sec. 4 contains our conclusions.

2 Schrödinger Equation in Finite Difference

The time-independent Schrödinger equation describing the dynamics of a microscopic particle of mass \(m\) in a one-dimensional the time-independent potential \(V(x)\) is given by

\[
-\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x),
\]

\[(1)\]

where \(E\) is the total energy of the particle. The solution of this equation yield the allowed energy eigenvalues \(E_n\) and the corresponding wave-function \(\psi_n(x)\).
To solve this partial differential equation, we need to specify the potential $V(x)$ as well as the boundary condition; the boundary conditions can be obtained from the physical requirement of the system.

Suppose a particle is bound state to around of attraction by the harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential (see Fig.1)

$$V(x) = \frac{1}{2}m\omega x^2 + b|x|\sin(10x) + \frac{a(\text{sech}(\mu x^2))^2(\cos(30x^2))^2}{(1 + g x^2)}, \quad (2)$$

where a, b, μ, g are real and positive constants. When equation (2) is substituted into equation (1) the time-independent Schrödinger equation is obtained

$$-\frac{2m}{\hbar^2}E\psi(x) = \frac{d^2\psi(x)}{dx^2} - \frac{m^2\omega^2x^2}{\hbar^2}\psi(x) - \frac{2mb}{\hbar^2}x|x|\sin(10x)\psi(x)$$

$$-\left(\frac{2ma(\text{sech}(\mu x^2))^2(\cos(30x^2))^2}{\hbar^2(1 + g x^2)}\right)\psi(x). \quad (3)$$

Equation (3) can be solved through a change of variable. When the following substitution are made(setting $\hbar = m = \omega = 1$),

$$\xi \equiv \sqrt{\frac{m\omega}{\hbar}}x, \quad x^2 = \frac{\hbar}{m\omega}\xi^2 \quad (4)$$

Equation (3) can be transformed into

$$\frac{d^2\psi(\xi)}{d\xi^2} + \left(\varepsilon - \xi^2 - 2b\xi|\sin(10\xi) - \frac{2a(\text{sech}(\mu \xi^2))^2(\cos(30\xi^2))^2}{1 + g \xi^2}\right)\psi(\xi) = 0. \quad (5)$$
We can rewrite the equation (5) by setting $\beta = 2b$, $\lambda = 2a$, $\varepsilon = \frac{E}{\hbar \omega}$ to give

$$\frac{d^2 \psi(\xi)}{d\xi^2} + \left(\varepsilon - \xi^2 - \beta|\xi| \sin(10\xi) - \frac{\lambda(\text{sech}(\mu \xi^2))^2}{1 + g \xi^2} \right) \psi(\xi) = 0. \quad (6)$$

Also, the time-independent potential in terms of the new variable is given by

$$V(\xi) = \xi^2 + \beta|\xi| \sin(10\xi) + \frac{\lambda(\text{sech}(\mu \xi^2))^2}{1 + g \xi^2}. \quad (7)$$

We can find the numerical solution equation (6) by dividing ξ into many small segments, each of $\Delta \xi$ in length. An analogous approximation for the second derivative is actually a bit tricky. There are several methods to calculate it, but a very efficient procedure is called the numerical shooting method. In short, the second-derivative for the first term of equation (6) is approximated given by

$$\frac{d^2 \psi(\xi)}{d\xi^2} \approx \frac{\psi_{i+1} + \psi_{i-1} - 2\psi_i}{(\Delta \xi)^2} \quad (8)$$

Equation (6) can be transformed into

$$\psi_{i+1} = 2\psi_i - \psi_{i-1} - (\Delta \xi)^2(\varepsilon - \xi^2 - \beta|\xi| \sin(10\xi) - \frac{\lambda(\text{sech}(\mu \xi^2))^2}{1 + g \xi^2}) \psi_i. \quad (9)$$

where $\xi_{i+1} = \Delta \xi + \xi_i$. The special potential given by harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential has been used in evaluate equation (9) into the mathematica program (see Sect.3).

3 Numerical Shooting Method and Results

We construe the new variable for using in calculating the ground-state energy eigenvalue, wave-function and the time-independent correlation function of the harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential.

1. ξ_{min} is the start position in the analysis range.
2. ξ_{max} is the ultimate position in the analysis range.
3. ξ is any position in the analysis range.
4. nn is a number of very small bars in the analysis range.
5. $\Delta \xi$ is the length of very small bars so that
Evaluate correlation function

Figure 2: Figure (a)-(f) plot of the time-independent wave-function in case of ground-state energy in harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential with vary $\mu = 5 = \frac{1}{width}$, $\mu = 10$, $\mu = 15$ and setting $\lambda = 15$ is amplitude of barrier and $\beta = 5$ and $\beta = 7$.

\[
\Delta \xi = \frac{\xi_{max} - \xi_{min}}{nn}. \quad (10)
\]

Logic of the numerical shooting method evaluation of energy eigenvalue, eigenfunction and time-independent correlation function for the harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential.

- Input values ξ_{min} and ξ_{max} in mathematica program for the harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential.

- Input the period amount.

- Input eq.(9) into mathematica program.

Find the initial value for calculation. Input the initial condition by setting $\psi_1 = 0$ for the position imprisons and set $\frac{d\psi}{d\xi} = 1$ from the slope of position 1 and 2, so that

\[
\frac{d\psi}{d\xi} \approx \frac{\psi_2 - \psi_1}{\Delta \xi} \Rightarrow \psi_2 \approx \Delta \xi. \quad (11)
\]
Figure 3: Figure (a)-(f) schematic diagram for behavior of the time-independent correlation function in case of ground-state energy in harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential with vary \(\lambda = 5, \lambda = 10, \lambda = 15 \) is amplitude of barrier and setting \(\beta = 3, \beta = 5 \).

By input \(\psi_1 \) and \(\psi_2 \) as two initial values for calculation, we can find \(\psi_3 \) from eq.(9). In the same way, we can find \(\psi_4 \) by substituting \(\psi_2 \) and \(\psi_3 \) in the equation. Keep doing this, we can find \(\psi_n \) (see fig.2 in the references[12])

- The next task is to calculate wave-function in eq.(9)\((\psi_{i+1}) \) so that it approaches zero as closely as desired. Normally, we assign a small value as the standard to make sure wave-function in eq.(9) get close enough to zero. For example, if \(|\psi_{i+1}| \leq 10^{-6} \), we stop the calculation and accept the final energy as the numerical solution.

- Plot the wave-function by the graph related to \(i \).

- Plot the wave-function is normalized by the graph related to \(i \).

- Plot the probability the average atomic density \(\tilde{n}(x) = |\psi(x)|^2 \) for the harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential.

- Input values \(\xi_{min} \) and \(\xi_{max} \) in the mathematica program for the harmonics oscillator potential.
- Input equation $\psi_{i+1} = 2\psi_i - \psi_{i-1} - (\Delta \xi)^2 (\varepsilon - \xi^2) \psi_i$ into the mathematica program for the harmonics oscillator potential.

- For example, if $|\psi(x)| \leq 10^{-6}$, we stop the evaluation and accept the final energy as the numerical solution.

- Plot the wave-function is normalized for the harmonics oscillator potential by the graph related to i.

- Plot the probability the average atomic density $\tilde{m}(x) = |\psi(x)|^2$ for the harmonics oscillator potential.

- Plot the density fluctuation $\delta n(x) = \tilde{n}(x) - \tilde{m}(x)$ for the harmonics oscillator potential.

- Plot the time-independent correlation function $C(x, \dot{x}) = \frac{\delta n(x) \delta n(\dot{x})}{n(x)n(\dot{x})}$.

Figure 4: Figure (a)-(f) plot of the time-independent correlation function in case of ground-state energy in harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential with vary $\mu = 5$, $\mu = 10$, $\mu = 15$ and setting $\lambda = 15$ is amplitude of barrier and $\beta = 5$, $\beta = 7$.

For example, numerical evaluation of energy eigenvalue, eigenfunction and the time-independent correlation function via the numerical shooting method for
the harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential.

\[\text{Input}[2]: \xi_{\text{min}} = -5; \xi_{\text{max}} = 5; nn = 100; \Delta \xi = N \left[\frac{\xi_{\text{max}} - \xi_{\text{min}}}{nn}\right]; \psi_1 = 0; N[\psi_2 = \Delta \xi]; \xi_1 = -5; \xi_2 = \xi_1 + \Delta \xi; \lambda = 10; g = 0.1; \beta = 3; \mu = 5; \]

\[\text{Input}[3]: \varepsilon = 2.4419428445; (\text{energy eigenvalue of harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential})\]

\[\text{Input}[4]: N[\text{Table}[\psi_{i+1} = 2\psi_i - \psi_{i-1} - (\Delta \xi)^2 \left(\varepsilon - (\xi_{i+1} = \xi_i + \Delta \xi)^2 - (\beta \text{Abs}[\xi_{i+1} = \xi_i + \Delta \xi]) \sin[10(\xi_{i+1} = \xi_i + \Delta \xi)] - \left(\lambda \text{Sech}[\mu(\xi_{i+1} = \xi_i + \Delta \xi)]^2 \cos[30(\xi_{i+1} = \xi_i + \Delta \xi)^2 \right) \psi_i], \{i, 2, 99\}]; \]

\[\text{Input}[5]: \text{SetPrecision} \left[\frac{1}{2} (4.1695... + 4.1695...), 20\right]; \]

\[\text{Input}[6]: \text{aa1} = \{0, 0.1, 0.22047, ..., 0.000349\}; \]

\[\text{Input}[7]: \text{bb1} = \{0 + 0.1 + 0.22047 + 0.391136 + 0.63894 + ... + 0.000349\} \times (\Delta \xi); \]

\[\text{Input}[8]: \text{ListPlot}[\text{aa1}]; \]

\[\text{Input}[9]: N[\text{Table}[\{\xi = \xi_{\text{min}} + i \Delta \xi, \psi_{i+1}\}, \{i, 0, 100\}]]; \]

\[\text{Input}[10]: \text{ListPlot}[]; \]

\[\text{Input}[11]: \text{kkk1} = \text{Interpolation}[]; \]

\[\text{Input}[12]: \text{Plot}[\text{kkk1}[\xi], \{\xi, -5, 5\}]; (\text{the wave-function is normalized}) \]

\[\text{Input}[13]: \text{Plot}[\left(\text{Abs}[\text{kkk1}][\xi]\right)^2, \{\xi, -5, 5\}, \text{PlotRange} \rightarrow \{0, 0.14\}]; (\text{Probability atomic density for harmonics oscillator Gaussian-Cosine rational symmetric potential}) \]

\[\text{Input}[14]: \text{Clear}[\varepsilon]; \]

\[\text{Input}[15]: \xi_{\text{min}} = -5; \xi_{\text{max}} = 5; nn = 100; \Delta \xi = N \left[\frac{\xi_{\text{max}} - \xi_{\text{min}}}{nn}\right]; \psi_1 = 0; N[\psi_2 = \Delta \xi]; \xi_1 = -5; \xi_2 = \xi_1 + \Delta \xi; (\text{calculation of energy and wave-function for harmonic oscillator potential}) \]

\[\text{Input}[16]: \varepsilon = 0.99937...; (\text{energy eigenvalue of harmonics oscillator potential}) \]

\[\text{Input}[17]: N[\text{Table}[\psi_{i+1} = 2\psi_i - \psi_{i-1} - (\Delta \xi)^2 \left(\varepsilon - (\xi_{i+1} = \xi_i + \Delta \xi)^2 \right) \psi_i], \{i, 2, 99\}]; (\text{harmonics oscillator potential.}) \]

\[\text{Input}[18]: \text{SetPrecision} \left[\frac{1}{2} (0.99937... + 0.9993746...), 20\right]; \]

\[\text{Input}[19]: \text{aa2} = \{0, 0.1, 0.2204, 0.39091, ..., 0.0003316\}; \]

\[\text{Input}[20]: \text{bb2} = \{0 + 0.1 + 0.220406 + 0.39091 + ... + 0.0003316\} \times (\Delta \xi); \]

\[\text{Input}[21]: \text{ListPlot}[\text{aa2}]; \]

\[\text{Input}[22]: N[\text{Table}[\{\xi = \xi_{\text{min}} + i \Delta \xi, \psi_{i+1}\}, \{i, 0, 100\}]]; \]

\[\text{Input}[23]: \text{ListPlot}[]; \]

\[\text{Input}[24]: \text{kkk2} = \text{Interpolation}[]; \]

\[\text{Input}[25]: \text{Plot}[\text{kkk2}[\xi], \{\xi, -5, 5\}]; (\text{the wave-function is normalized}) \]

\[\text{Input}[26]: \text{Plot}[\left(\text{Abs}[\text{kkk2}][\xi]\right)^2, \{\xi, -5, 5\}, \text{PlotRange} \rightarrow \{0, 0.17\}]; (\text{Probability atomic density for harmonic oscillator potential}) \]

\[\text{Input}[27]: \text{Plot} \left(\left(\text{Abs}[\text{kkk2}][\xi]\right)^2 - \left(\text{Abs}[\text{kkk2}][\xi]\right)^2 \right), \{\xi, -5, 5\}, \text{PlotRange} \rightarrow \{-0.095, 0.055\}\];
Evaluate correlation function

Input[28] : \(GF[\xi] := \left(\text{Abs}\left[\frac{kkk[\xi]}{bb1} \right] \right)^2 - \left(\text{Abs}\left[\frac{kkk[\xi]}{bb2} \right] \right)^2 \); (the atomic density fluctuation for \(\xi \) position)

Input[29] : \(GF1[\xi] := \left(\text{Abs}\left[\frac{kkk[\xi]}{bb1} \right] \right)^2 - \left(\text{Abs}\left[\frac{kkk[\xi]}{bb2} \right] \right)^2 \); (the atomic density fluctuation for \(\xi \) position)

Input[30] : \(CC[\xi] := \left(GF[\xi] \times GF1[\xi] \right) \); (the correlation function)

Input[31] : \(CORR[ss] := \text{NIntegrate}[CC[\xi], \{\xi, -4.5, 4.5\}] \);

Input[32] : \(\text{Plot}[CORR[ss], \{ss, 0, 8\}, \text{PlotRange} \rightarrow \{-0.004, 0.008\}, \text{PlotStyle} \rightarrow \text{RGBColor}[0, 0, 1], \text{Axes} \rightarrow \text{True}, \text{Frame} \rightarrow \text{True}, \text{Ticks} \rightarrow \text{True}] \)

4 Conclusion

In this case, the wave-function of the harmonics oscillator hyperbolic Secant-Cosine rational asymmetric potential similar not to in case of a typical harmonics oscillator (see fig(2)). Figure(2)(a-c) if the values of \(\mu \) has increase, the ground-state energy eigenvalue has lessen and the wave-function has split up asymmetric lessen nodes.

From figure(2)(d-f) if the values of \(g \) has increase, the the ground-state energy eigenvalue has lessen. Figure(3)(a-f) if the values of \(\lambda \) has increase, the time-independent correlation function has incline. Comparison between figure(3)(b) and figure(3)(e) if the values \(\beta \) has increase, the time-independent correlation function has supplement. Figure(4)(a-c) if the values of \(\mu \) has increase, the time-independent correlation function has lessen. From figure(4)(d-f) if the values of \(\mu \) has increase, the time-independent correlation function has little.

Acknowledgements

A. Hutem acknowledge the financial support of the Institute Research and Development Physics Division, Faculty of Science and Technology, Phetchabun Rajabhat University, Thailand.

References

Received: May 1, 2014