Self-Diffusion Coefficient of Liquid Lithium

S. N. Zlygostev

Ural Federal University, Mira str. 19, 620002, Ekaterinburg, Russia

Copyright © 2014 S. N. Zlygostev. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The self-diffusion coefficient of the liquid lithium at $T=454$K is calculated in the square-well model within the random phase approximation. A good agreement with available experimental data is obtained.

Keywords: Square-well model, random phase approximation, self-diffusion coefficient, liquid metal

Earlier, the square-well (SW) model in the random phase approximation with the hard-sphere reference system had been successfully applied to study the self-diffusion coefficient, $D=(\beta \xi)^{-1}$ (where ξ is the friction coefficient, $\beta=(k_BT)^{-1}$, k_B - Boltzmann constant, T - temperature), of liquid Na and K near their melting points [1, 2]. Here, this approach is used to calculate D of the liquid Li at the same condition.

The Davis-Palyvos [3] approach is used for this aim:

$$\xi = \xi_H + \xi_S + \xi_{SH}, \quad (1)$$

where ξ_H and ξ_S are the contributions due to the hard and soft part of the pair interaction, respectively, ξ_{SH} - the cross-correlation term:

$$\xi_H = \frac{8}{3} \rho \sigma^2 g(\sigma)(\pi M / \beta)^{1/2}, \quad (2)$$

$$\xi_S = -\frac{(\beta \pi M)^{1/2}}{12\pi} \int_0^\infty [S(q) - 1]\phi(q)q^3 dq, \quad (3)$$

$$\xi_{SH} = -\frac{1}{3} \rho g(\sigma)(\beta M / \pi)^{1/2} \int_0^\infty [q\sigma \cos(q\sigma) - \sin(q\sigma)]\phi(q) dq. \quad (4)$$
where ρ is the mean atomic density (taken here from [4]), σ - hard-core diameter, $g(r)$ - radial distribution function, M - atomic mass, $S(q)$ - structure factor, $\phi(q)$ - Fourier transform of the soft part of the pair potential. The SW model parameters for liquid Li are defined by fitting the first peak of $S(q)$ with respect to the experimental one [5].

Calculated D is compared with two experimental results (Table 1).

Table 1. Self-diffusion coefficient of liquid Li at $T = 454$ K.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$D \times 10^9$ (m2/s)</td>
<td>7.95</td>
<td>6.80</td>
<td>5.98</td>
</tr>
</tbody>
</table>

It can be seen that the SW model gives slightly overstated value of D in comparison with experimental ones, similar to the cases of liquid Na [1] and K [2].

References

Received: May 11, 2014