A Note on q-Analogue of Lambda-Daehee Polynomials

Yu Seon Jang

Department of Applied Mathematics
Kangnam University
Youngin 446-702, Republic of Korea

Hyuck In Kwon

Department of Mathematics
Kwangwoon University
Seoul 139-701, Republic of Korea

Seog-Hoon Rim

Department of Mathematics Education
Kyungpook National University
Taegu 702-701, Republic of Korea

Jong Jin Seo

Department of Applied Mathematics
Pukyong National University
Pusan 698-737, Republic of Korea

Copyright © 2014 Yu Seon Jang, Hyuck In Kwon, Seog-Hoon Rim and Jong Jin Seo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we consider the q-analogue of lambda-Daehee polynomials and we give some new identities of these polynomials which are derived from p-adic invariant integral on \mathbb{Z}_p
Keywords: p-adic integral on \mathbb{Z}_p, lambda-Daehee polynomials, stirling numbers

1. Introduction

As is well known, the lambda-Daehee polynomials are defined by the generating function to be

$$\sum_{n=0}^{\infty} D_{n, \lambda}(x) \frac{t^n}{n!} = \frac{\lambda \log(1 + t)}{(1 + t)^\lambda - 1}(1 + t)^x, \quad (\text{see [7]}).$$

Let p be a fixed prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p, and \mathbb{C}_p will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_p. The p-adic norm $|\cdot|$ is normalized as $|p|_p = 1/p$. Let $UD(\mathbb{Z}_p)$ be the space of uniformly differentiable functions on \mathbb{Z}_p, the p-adic invariant integral on \mathbb{Z}_p. For $f \in UD(\mathbb{Z}_p)$, the p-adic invariant integral on \mathbb{Z}_p is defined to be

$$I_0(f) = \int_{\mathbb{Z}_p} f(x) d\mu_0(x) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x) \mu_0(x + p^N \mathbb{Z}_p)$$

$$= \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x), \quad (\text{see [1-18]}).$$

By (2), we easily get

$$I_0(f_1) - I_0(f) = f(t(0), \quad (\text{see [8, 10, 11]}))$$

where $f_1(x) = f(x + 1)$.

From (3), we have

$$\int_{\mathbb{Z}_p} e^{xt} d\mu_0(x) = \frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}, \quad (\text{see [1-8]}),$$

where B_n are called the Bernoulli numbers.

In particular, the Bernoulli polynomials are given by

$$\int_{\mathbb{Z}_p} e^{(x+y)t} d\mu_0(y) = \frac{t}{e^t - 1} e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}.$$ \hfill (5)

By (4) and (5), we get

$$B_n(x) = \sum_{\ell=1}^{n} \binom{n}{\ell} B_\ell x^{n-\ell}, \quad (\text{see [10-18]}).$$

$$B_n(x) = \sum_{\ell=1}^{n} \binom{n}{\ell} B_\ell x^{n-\ell}, \quad (\text{see [10-18]}).$$
The Stirling number of the first kind is defined by the falling factorial sequence to be
\[(x)_n = x(x-1) \cdots (x-n+1) = \sum_{\ell=1}^{n} S_1(n, \ell) x^\ell, \quad (n \in \mathbb{Z}_{\geq 0}).\] (7)

As is known, the Stirling number of the second kind is given by
\[(e^t - a)^n = n! \sum_{\ell=n}^{\infty} S_2(\ell, n) t^\ell/\ell!, \quad (\text{see } [8, 16]).\] (8)

In viewpoint of (1), we consider the q-analogue of lambda-Daehee polynomials and investigate some properties of those polynomials which are derived from the p-adic invariant integral on \mathbb{Z}_p.

2. SOME IDENTITIES FOR THE HIGHER-ORDER q-BERNOULLI POLYNOMIALS OF THE SECOND KIND

In this section, we assume that $q, t \in \mathbb{C}_p$ with $|t|_p < \frac{1}{2} \frac{1}{p^{\lambda+1}}$ and $\lambda \in \mathbb{Z}_p$ with $\lambda \neq 0$. For $f(x) = (1 + qt)^\lambda x$, by (3), we get
\[\int_{\mathbb{Z}_p} (1 + qt)^{x+\lambda y} d\mu_0(y) = \frac{\lambda \log(1 + qt)}{(1 + qt)^\lambda} (1 + qt)^x.\] (9)

In viewpoint of (1), we define the q-analogue lambda-Daehee polynomials as follows:
\[\frac{\lambda \log(1 + qt)}{(1 + qt)^\lambda} (1 + qt)^x = \sum_{n=0}^{\infty} BD_{n,q}(x|\lambda) \frac{t^n}{n!}.\] (10)

When $x = 0, BD_{n,q}(\lambda) = BD_{n,q}(0|\lambda)$ are called the q-analogue of lambda-Daehee numbers.

Remark. Note that $\lim_{q \to 1} BD_{n,q}(x|\lambda) = D_{n,\lambda}(x)$.

From (9) and (10), we have
\[\sum_{n=0}^{\infty} BD_{n,q}(x|\lambda) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} (1 + qt)^{\lambda y + x} d\mu_0(y) = \sum_{n=0}^{\infty} q^n \int_{\mathbb{Z}_p} (\lambda y + x)_n d\mu_0(y) \frac{t^n}{n!}.\] (11)

Therefore, by (11), we obtain the following theorem.

Theorem 2.1. For $n \geq 0$, we have
\[q^n \int_{\mathbb{Z}_p} (x + \lambda y)_n d\mu_0(dy) = BD_{n,q}(x|\lambda).\]
By replacing $q t$ by $e^t - 1$ in (10), we get
\[
\sum_{n=0}^{\infty} q^{-n} BD_{n,q}(x|\lambda) \frac{(e^t - 1)^n}{n!} = \frac{\lambda t}{e^\lambda - 1} e^{tx} \sum_{n=0}^{\infty} B_n \left(\frac{x}{\lambda} \right) \lambda^n \frac{t^n}{n!}.
\] (12)

and
\[
\sum_{n=0}^{\infty} q^{-n} BD_{n,q}(x|\lambda) \frac{(e^t - 1)^n}{n!} = \sum_{n=0}^{\infty} q^{-n} BD_{n,q}(x|\lambda) \sum_{m=n}^{\infty} S_2(m, n) \frac{t^m}{m!} \sum_{n=0}^{\infty} \left(\sum_{n=0}^{m} q^{-n} BD_{n,q}(x|\lambda) S_2(m, n) \right) \frac{t^m}{m!}.
\] (13)

Therefore, by (12) and (13), we obtain the following theorem.

Theorem 2.2. For $m \geq 0$, we have
\[
\sum_{n=0}^{m} q^{-n} BD_{n,q}(x|\lambda) S_2(m, n) = \lambda^m B_m \left(\frac{x}{\lambda} \right).
\]

From Theorem 1, we have
\[
q^{-n} BD_{n,q}(x|\lambda) = \sum_{\ell=0}^{n} S_1(n, \ell) \int_{\mathbb{Z}_p} (x + y \lambda)^\ell d\mu_0(y)
= \sum_{\ell=0}^{n} S_1(n, \ell) \lambda^\ell \int_{\mathbb{Z}_p} \left(\frac{x}{\lambda} + y \right)^\ell d\mu_0(y)
= \sum_{\ell=0}^{n} S_1(n, \ell) \lambda^\ell B_\ell \left(\frac{x}{\lambda} \right).
\] (14)

Theorem 2.3. For $n \geq 0$, we have
\[
q^{-n} BD_{n,q}(x|\lambda) = \sum_{\ell=0}^{n} S_1(n, \ell) \lambda^\ell B_\ell \left(\frac{x}{\lambda} \right).
\]

Let us consider the q-analogue of lambda-Daehee polynomials of order $k \in \mathbb{N}$ as follows:
\[
q^{-n} BD_{n,q}^{(k)}(x|\lambda) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\lambda \sum_{i=1}^{k} x_i + x \right) d\mu_0(x_1) \cdots d\mu_0(x_k).
\] (15)

Thus, by (15), we get
\[
q^{-n} BD_{n,q}^{(k)}(x|\lambda) = \sum_{\ell=1}^{n} S_1(n, \ell) \lambda^\ell \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\sum_{i=1}^{k} x_i + \frac{x}{\lambda} \right)^\ell d\mu_0(x_1) \cdots d\mu_0(x_k).
\] (16)
Now, we observe that
\[
\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} e^{\left(\sum_{i=1}^{k} x_i + x\right)} d\mu_0(x_1) \cdots d\mu_0(x_k) = \left(\frac{t}{e^t + 1}\right)^k e^{xt}
\]
\[
= \sum_{n=0}^{\infty} B^{(k)}_n(x) \frac{t^n}{n!}
\]
where \(B^{(k)}_n(x)\) are called Bernoulli polynomials of order \(k\).

By (17), we get
\[
B^{(k)}_n(x) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\sum_{i=1}^{k} x_i + x\right)^n d\mu_0(x_1) \cdots d\mu_0(x_k).
\]

From (16) and (18), we have
\[
q^{-n} BC^{(k)}_{n,q}(x|\lambda) = \sum_{\ell=1}^{n} S_1(n, \ell) \lambda^\ell B^{(k)}_{\ell}\left(\frac{x}{\lambda}\right).
\]

From (15), we can derive the generating function of \(BD^{(k)}_{n,q}(x|\lambda)\) as follows:
\[
\sum_{n=0}^{\infty} BD^{(k)}_{n,q}(x|\lambda) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + qt)^{\lambda \sum_{i=1}^{k} x_i + x} d\mu_0(x_1) \cdots d\mu_0(x_k)
\]
\[
= \left(\frac{\lambda \log(1 + qt)}{(1 + qt)^\lambda - 1}\right)^k (1 + qt)^x.
\]

by replacing \(qt\) by \(e^t - 1\), we get
\[
\sum_{n=0}^{\infty} q^{-n} BD^{(k)}_{n,q}(x|\lambda) \frac{1}{n!} (e^t - 1)^n = \left(\frac{\lambda t}{e^t - 1}\right)^k e^{xt}
\]
\[
= \sum_{n=0}^{\infty} B^{(k)}_n\left(\frac{x}{\lambda}\right) \lambda^n \frac{t^n}{n!}
\]
and
\[
\sum_{n=0}^{\infty} q^{-n} BD^{(k)}_{n,q}(x|\lambda) \frac{1}{n!} (e^t - 1)^n = \sum_{m=0}^{\infty} \left(\sum_{n=0}^{m} q^{-n} BD^{(k)}_{n,q}(x|\lambda) S_2(m, n)\right) \frac{t^m}{m!}.
\]

Therefore, by (21) and (22), we obtain the following theorem.

Theorem 2.4. For \(m \geq 0\), we have
\[
\sum_{n=0}^{\infty} BD^{(k)}_{n,q}(x|\lambda) S_2(m, n) q^{-n} = \lambda^m B^{(k)}_m\left(\frac{x}{\lambda}\right).
\]
For \(n \geq 0 \), the rising factorial sequence is defined by
\[
x^{n!} = x(x - 1) \cdots (x - n + 1) = (-1)^n (-x)_n
\]
\[
= \sum_{\ell=0}^{n} |S_1(n, \ell)| x^\ell,
\]
where \(|S_1(n, \ell)| = (-1)^{n-\ell} S_1(n, \ell) \).

We consider the \(q \)-analogue of lambda-Daehee polynomials of the second kind as follows:
\[
\hat{BD}_n,q(x|\lambda) = q^n \int_{Z_p} (-\lambda y + x)_n d\mu_0(y), \quad (n \geq 0).
\] (24)

From (24), we have
\[
q^n \hat{BD}_n,q(x|\lambda) = \sum_{\ell=0}^{n} S_1(n, \ell) (-1)^\ell \lambda^\ell \int_{Z_p} \left(-\frac{x}{\lambda} + y \right)^\ell d\mu_0(y)
\]
\[
= \sum_{\ell=0}^{n} S_1(n, \ell) (-1)^\ell \lambda^\ell B_\ell \left(-\frac{x}{\lambda} \right).
\] (25)

When \(x = 0 \), \(\hat{BD}_{n,q}(\lambda) = \hat{BD}_{n,q}(0|\lambda) \) are called the \(q \)-analogue of lambda-Daehee numbers of the second kind. The generating function of \(\hat{BD}_{n,q}(x|\lambda) \) is given by
\[
\sum_{n=0}^{\infty} \hat{BD}_{n,q}(x|\lambda) t^n n! = \int_{Z_p} (1 + qt)^{-\lambda y + x} d\mu_0(y)
\]
\[
= \frac{\lambda \log(1 + qt)}{(1 + qt)^\lambda - 1} (1 + qt)^{\lambda + x}.
\] (26)

By replacing \(qt \) by \(e^t - 1 \), we get
\[
\sum_{n=0}^{\infty} q^n \hat{BD}_{n,q}(x|\lambda) \frac{1}{n!} (e^t - 1)^n = \sum_{m=0}^{\infty} \lambda^m B_m \left(\frac{\lambda + x}{\lambda} \right) \frac{t^m}{m!}
\] (27)

and
\[
\sum_{n=0}^{\infty} \hat{BD}_{n,q}(x|\lambda) q^n \frac{1}{n!} (e^t - 1)^n = \sum_{m=0}^{\infty} \left(\sum_{n=0}^{m} \hat{BD}_{n,q}(x|\lambda) S_2(m, n) q^n \right) \frac{t^m}{m!}.
\] (28)

Therefore, by (27) and (28), we obtain the following theorem.

Theorem 2.5. For \(m \geq 0 \), we have
\[
q^{-m} \hat{BD}_{m,q}(x|\lambda) = \sum_{\ell=0}^{m} S_1(m, \ell) (-1)^\ell \lambda^\ell B_\ell \left(-\frac{x}{\lambda} \right)
\]
and
\[
\lambda^m B_m \left(\frac{\lambda + x}{\lambda} \right) = \sum_{n=0}^{m} \overline{BD}_{n,q}(x|\lambda) S_2(m, n) q^{-n}.
\]

For \(k \in \mathbb{N} \), let us consider the \(q \)-analogue of lambda-Daehee polynomials of the second kind with order \(k \) as follows:
\[
\overline{BD}_{n,q}^{(k)}(x|\lambda) = q^n \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(-\lambda \sum_{i=1}^{k} x_i + x \right)_n \, d\mu_0(x_1) \cdots d\mu_0(x_k),
\]
where \(n \geq 0 \).

From (29), we have
\[
q^{-n} \overline{BD}_{n,q}^{(k)}(x|\lambda) = \sum_{\ell=0}^{n} S_1(n, \ell)(-1)^\ell B_\ell^{(k)} \left(-\frac{x}{\lambda} \right) \lambda^\ell.
\]

The generating function of \(\overline{BD}_{n,q}^{(k)}(x|\lambda) \) is given by
\[
\sum_{n=0}^{\infty} \overline{BD}_{n,q}^{(k)}(x|\lambda) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} (1 + qt)^{-\lambda \sum_{i=1}^{k} x_i + x} \, d\mu_0(x_1) \cdots d\mu_0(x_k)
\]
\[
= \left(\frac{\lambda \log(1 + qt)}{1 + qt} \right)^k (1 + qt)^{\lambda k + x}.
\]

By replacing \(qt \) by \(e^t - 1 \) in (31), we get
\[
\sum_{n=0}^{\infty} q^{-n} \overline{BD}_{n,q}^{(k)}(x|\lambda) \frac{1}{n!} (e^t - 1)^n = \left(\frac{\lambda t}{e^M - 1} \right)^k e^{(\lambda k + x)t}
\]
\[
= \sum_{m=0}^{\infty} \lambda^m B_m^{(k)} \left(k + \frac{x}{\lambda} \right) \frac{t^m}{m!}
\]
and
\[
\sum_{n=0}^{\infty} q^{-n} \overline{BD}_{n,q}^{(k)}(x|\lambda) \frac{1}{n!} (e^t - 1)^n = \sum_{m=0}^{\infty} \sum_{n=0}^{m} \overline{BD}_{n,q}^{(k)}(x|\lambda) S_2(m, n) q^{-n} \frac{t^m}{m!}.
\]

Therefore, by (32) and (33), we obtain the following theorem.

Theorem 2.6. For \(m \geq 0 \), we have
\[
(-q)^m \overline{BD}_{m,q}^{(k)}(x|\lambda) = \sum_{\ell=0}^{m} |S_1(m, \ell)| \lambda^\ell B_\ell^{(k)} \left(-\frac{x}{\lambda} \right)
\]
and
\[
\lambda^m B_m^{(k)} \left(k + \frac{x}{\lambda} \right) = \sum_{n=0}^{m} \overline{BD}_{n,q}^{(k)}(x|\lambda) S_2(m, n) q^{-n}.
\]
Now, we observe that
\[q^{-n}(-1)^n \frac{BD_{n,q}(x|\lambda)}{n!} = (-1)^n \int_{\mathbb{Z}_p} \binom{x + \lambda y}{n} d\mu_q(y) \]
\[= \int_{\mathbb{Z}_p} \binom{-\lambda y - x + n - 1}{n} d\mu_q(y) \]
\[= \sum_{m=0}^{n} \binom{n-1}{m-1} \int_{\mathbb{Z}_p} \binom{-y\lambda - x}{m} d\mu_q(y) \]
\[= \sum_{m=1}^{n} \binom{n-1}{m-1} q^{-m} \frac{BD_{m,q}(-x|\lambda)}{m!} \]
(36)

and
\[(-1)^n q^{-n} \frac{BD_{n,q}(x|\lambda)}{n!} = \sum_{m=1}^{n} \binom{n-1}{m-1} \frac{BD_{m,q}(-x|\lambda)}{m!} q^{-m}. \]
(37)

Therefore, by (36) and (37), we obtain the following theorem.

Theorem 2.7. For \(n \geq 1 \), we have
\[q^{-n}(-1)^n \frac{BD_{n,q}(x|\lambda)}{n!} = \sum_{m=1}^{n} \binom{n-1}{m-1} \frac{BD_{m,q}(-x|\lambda)}{m!} q^{-m}, \]
(38)

and
\[q^{-n}(-1)^n \frac{BD_{n,q}(x|\lambda)}{n!} = \sum_{m=1}^{n} \binom{n-1}{m-1} \frac{BD_{m,q}(-x|\lambda)}{m!} q^{-m}. \]
(39)

References

A note on \(q\)-analogue of lambda-Daehee polynomials

Received: May 15, 2014