Some Symmetric Identities of Generalized Carlitz’s q-Bernoulli Polynomials of the First Kind

Dmitry V. Dolgy
Hanrimwon, Kwangwoon University
Seoul 139-701, Korea
&
School of Natural Sciences
Far Eastern Federal University
Vladivostok, Russia

Yu Seon Jang
Department of Applied Mathematics
Kangnam University
Youngin 446-702, Republic of Korea

Taekyun Kim
Department of Mathematics
Kwangwoon University
Seoul 139-701, Republic of Korea

Jong Jin Seo
Department of Applied Mathematics
Pukyong National University
Busan 608-737, Republic of Korea

Copyright © 2014 Dmitry V. Dolgy, Yu Seon Jang, Taekyun Kim and Jong Jin Seo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

In this paper, we consider the generalized Carlitz q-Bernoulli polynomials of the first kind which are derived from q-Volkenborn integral on \mathbb{Z}_p. Finally, we investigate some symmetric identities of those polynomials.

Mathematics Subject Classification: 11B68, 11S80

Keywords: Dirichlet character χ, generalized Bernoulli polynomials attached to χ, q-Volkenborn integral on \mathbb{Z}_p, generalized Carlitz’s q-Bernoulli polynomials of the first kind

1. Introduction

Let p be a fixed prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p, and \mathbb{C}_p will denote the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_p, respectively. The p-adic norm $|\cdot|_p$ is normalized as $|p|_p = 1/p$. We assume that q is an indeterminate in \mathbb{C}_p with $|1 - q|_p < p^{-1/(p-1)}$. For $d \in \mathbb{N}$ with $(d, p) = 1$, we set

$$X = \lim_{N \to \infty} \mathbb{Z}/dp^NZ, \quad X^* = \bigcup_{0 < a < dp \atop (a, dp) = 1} (a + dp\mathbb{Z}_p)$$

and

$$a + dp^NZ_p = \{ x \in X | x \equiv a \, (\text{mod} \, dp^N) \},$$

where $a \in \mathbb{Z}$ lies in $0 \leq a < dp^N$.

The q number of x is defined by $[x]_q = (1 - q^x)/(1 - q)$. Note that $\lim_{q \to 1} [x]_q = x$. Let $UD(\mathbb{Z}_p)$ be the space of uniformly differentiable functions on \mathbb{Z}_p. For $f \in UD(\mathbb{Z}_p)$ the q-Volkenborn integral on \mathbb{Z}_p is defined by T. Kim to be

$$I_q(f) = \int_{\mathbb{Z}_p} f(x)d\mu_q(x)$$

$$= \lim_{N \to \infty} \sum_{x=0}^{p^{N-1}} f(x)\mu_q(x + p^NZ_p)$$

$$= \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^{N-1}} f(x)q^x, \quad (\text{see } [13, 14]). \tag{1}$$

From (1), we can easily derive the following integral equation:
\begin{align*}
q I_q(f_1) &= I_q(f) + (q - 1)f(0) + \frac{q - 1}{\log q} f'(0), \\
\text{(2)}
\end{align*}

where \(f_1(x) = f(x + 1) \).

Let \(\chi \) be a Dirichlet’s character with conductor \(d \in \mathbb{N} \). As is well known, the generalized Bernoulli polynomials attached to \(\chi \) are defined by the generating function to be

\begin{align*}
\frac{1}{e^{dt} - 1} \left(\sum_{a=0}^{d-1} \chi(a)e^{at} \right) e^{xt} &= \sum_{n=0}^{\infty} B_{n,\chi}(x) \frac{t^n}{n!}, \quad \text{(see [3-19]).} \\
\text{(3)}
\end{align*}

When \(x = 0 \), \(B_{n,\chi} = B_{n,\chi}(0) \) are called the generalized Bernoulli numbers attached to \(\chi \). From (1) and (2), we have

\begin{align*}
\int_X \chi(y)e^{(x+y)t}d\mu_0(y) &= \frac{t}{e^{dt} - 1} \sum_{a=0}^{d-1} \chi(a)e^{(a+x)t} \\
&= \sum_{n=0}^{\infty} B_{n,\chi}(x) \frac{t^n}{n!}, \\
\text{(4)}
\end{align*}

where \(\lim_{q \to 1} \int_{\mathbb{Z}_p} f(x)d\mu_q(x) = \int_{\mathbb{Z}_p} f(x)d\mu_0(x) \).

Thus, by (4), we get

\begin{align*}
\int_X \chi(y)(x+y)^n d\mu_0(y) = B_{n,\chi}(x), \quad (n \geq 0). \\
\text{(5)}
\end{align*}

The generalized Carlitz \(q \)-Bernoulli polynomials of the first kind attached to \(\chi \) with viewpoint of (5) are defined by

\begin{align*}
\int_X \chi(y)[x+y]^n d\mu_0(y) = \beta_{n,\chi,q}(x), \quad (n \geq 0). \\
\text{(6)}
\end{align*}

When \(x = 0 \), \(\beta_{n,\chi,q} = \beta_{n,\chi,q}(0) \) are called the first kind attached to \(\chi \) (see [3, 13]). From (6), we note that the generating function of \(\beta_{n,\chi,q}(x) \) is given by

\begin{align*}
\int_X \chi(y)e^{[x+y]q^t}d\mu_q(y) &= \sum_{n=0}^{\infty} \beta_{n,\chi,q}(x) \frac{t^n}{n!}. \\
\text{(7)}
\end{align*}

From (6) and (7), we can derive

\begin{align*}
\beta_{n,\chi,q}(x) &= \sum_{\ell=0}^{n} \binom{n}{\ell} \beta_{\ell,\chi,q} q^{\ell x} [x]^n = [d]^{n-1} \sum_{a=0}^{d-1} \chi(a) q^a \beta_{n,q^d} \left(\frac{x + a}{d} \right), \\
\text{(8)}
\end{align*}
where $\beta_{n,q}(x)$ are the Carlitz q-Bernoulli polynomials of the first kind (see [3, 13, 14, 15]).

In this paper, we investigate some properties of the generalized Carlitz q-Bernoulli polynomials of the first kind attached to χ and give some interesting symmetric identities of those polynomials.

2. SOME IDENTITIES OF THE GENERALIZED CARLITZ q-BERNOULLI POLYNOMIALS OF THE FIRST KIND.

Let w_1, w_2, w_3 be positive integers. From (7), we consider the following integral equation;

\[
\int_X \chi(y) \exp \{ [w_2 w_3 y + w_1 w_2 w_3 x + w_1 w_3 i + w_1 w_2 j]_q t \} d\mu_{q w_2 w_3} (y) = \lim_{N \to \infty} \frac{1}{[dw_1 p^N]_{q w_2 w_3}} \sum_{k=0}^{d w_1 - 1} \sum_{y=0}^{p^N - 1} \chi(k) \\
\times \exp \{ [w_2 w_3 (k + dw_1 y) + w_1 w_2 w_3 x + w_1 w_3 i + w_1 w_2 j]_q t \} q^{w_2 w_3 (k + dw_1 y) t}.
\]

(9)

From (9), we can derive the following equation;

\[
I = \frac{1}{[w_2 w_3]_q} \sum_{i=0}^{d w_2 - 1} \sum_{j=0}^{d w_3 - 1} \chi(i) \chi(j) q^{w_1 w_3 i + w_1 w_2 j} \\
\times \int_X \chi(y) \exp \{ [w_2 w_3 y + w_1 w_2 w_3 x + w_1 w_3 i + w_1 w_2 j]_q t \} d\mu_{q w_2 w_3} (y) = \lim_{N \to \infty} \frac{1}{[d(w_1 w_2 w_3)]_q} \sum_{i=0}^{d w_2 - 1} \sum_{j=0}^{d w_3 - 1} \sum_{k=0}^{d w_1 - 1} \sum_{y=0}^{p^N - 1} q^{w_1 w_3 i + w_1 w_2 j + w_2 w_3 k} \chi(i) \chi(j) \chi(k) \\
\times \exp \{ [w_2 w_3 (k + dw_1 y) + w_1 w_2 w_3 x + w_1 w_3 i + w_1 w_2 j]_q t \} q^{w_1 w_3 w_2 w_3 y}.
\]

(10)

By the same method as (10), we get
Theorem 2.1. Let σ be the same for any permutations $\sigma \in S_3$.

Therefore, by (10) and (11), we obtain the following theorem.

Theorem 2.1. Let d, w_1, w_2, w_3 be positive integers. Then the following expressions

\[
[\sum_{i=0}^{d-1} \sum_{j=0}^{d-1} \chi(i)\chi(j)q^{w_1i+w_2j}]_q = \lim_{N \to \infty} \frac{1}{[d! w_1 w_2 w_3]_q} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} \sum_{k=0}^{N-1} \sum_{y=0}^{w_2 w_1 + w_2 w_3 + w_1 w_3 k} \chi(i)\chi(j) \exp \{ [w_3 w_1(k + d w_3 y) + w_1 w_2 w_3 x + w_2 w_1 i + w_2 w_3 j]_q t \}.
\]

(11)

are the same for any permutations $\sigma \in S_3$.

It is easy to show that

\[
[w_1 w_2 w_3 y + w_1 w_2 w_3 x + w_1 w_3 i + w_1 w_2 j]_q = [w_2 w_3]_q \left[y + w_1 x + \frac{w_1}{w_2} i + \frac{w_1}{w_3} j \right]_q^{w_2 w_3}.
\]

(12)

By (12), we get

\[
\int_X \left[w_2 w_3 y + w_1 w_2 w_3 x + w_1 w_3 i + w_1 w_2 j \right]_q^n \chi(y) d\mu_{q^{w_2 w_3}}(y) = [w_2 w_3]_q^n \int_X \chi(y) \left[y + w_1 x + \frac{w_1}{w_2} i + \frac{w_1}{w_3} j \right]_q^n d\mu_{q^{w_2 w_3}}(y).
\]

(13)

Therefore, by Theorem 1 and (13), we obtain the following theorem.

Theorem 2.2. Let $d, w_1, w_2, w_3 \in \mathbb{N}$ and $n \in \mathbb{N} \cup \{0\}$, the following expressions
are the same for any permutation $\sigma \in S_3$.

We observe that

$$
\left[y + w_1 x + \frac{w_1 i}{w_2} + \frac{w_1 j}{w_3} \right]^n
$$

is the same as

$$
\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \left(\frac{w_1 i}{w_2 w_3} \right)^{n-k} [w_3 i + w_2 j]^{n-k} q^{k(w_1 w_3 i + w_1 w_2 j)} [y + w_1 x]^k
$$

Thus, by (14), we get

$$
\int_X \chi(y) \left[y + w_1 x + \frac{w_1 i}{w_2} + \frac{w_1 j}{w_3} \right]^n d\mu_{q^{w_2 w_3}}(y)
$$

$$
= \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \left(\frac{[w_1 q]}{[w_2 w_3]_q} \right)^{n-k} [w_3 i + w_2 j]^{n-k} q^{k(w_1 w_3 i + w_1 w_2 j)} \int_X \chi(y) [y + w_1 x]^k d\mu_{q^{w_2 w_3}}(y)
$$

$$
= \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \left(\frac{[w_1 q]}{[w_2 w_3]_q} \right)^{n-k} [w_3 i + w_2 j]^{n-k} q^{k(w_1 w_3 i + w_1 w_2 j)} \beta_{k, x, q^{w_2 w_3}}(w_1 x)
$$

From (15), we have

$$
I = [w_2 w_3]_q^{n-1} \sum_{i=0}^{d w_2 - 1} \sum_{j=0}^{d w_3 - 1} \chi(i) \chi(j) q^{w_1 w_3 i + w_1 w_2 j}
$$

$$
\times \int_X \chi(y) \left[y + w_1 x + \frac{w_1 i}{w_2} + \frac{w_1 j}{w_3} \right]^n d\mu_{q^{w_2 w_3}}(y)
$$

$$
= \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} [w_2 w_3]_q^{k-1} [w_1 q]^{n-k} \beta_{k, x, q^{w_2 w_3}}(w_1 x)
$$

$$
\times \sum_{i=0}^{d w_2 - 1} \sum_{j=0}^{d w_3 - 1} \chi(i) \chi(j) q^{(w_1 w_3 i + w_1 w_2 j)(k+1)} [w_3 i + w_2 j]^{n-k}
$$

$$
= \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} [w_2 w_3]_q^{k-1} [w_1 q]^{n-k} \beta_{k, x, q^{w_2 w_3}}(w_1 x) S_{n, k, q^{w_1}}(w_1, w_2, \ldots, d|\chi),
$$
where
\[
S_{n,k,q}(w_1, w_2, : d|\chi) = \sum_{i=0}^{dw_1-1} \sum_{j=0}^{dw_2-1} \chi(i)\chi(j)q^{(w_2i+w_1j)(k+1)}[w_2i + w_1j]_q^{n-k}.
\]

By the same method as (16), we get
\[
I = [w_3w_1]_q^{n-1} \sum_{i=0}^{dw_3-1} \sum_{j=0}^{dw_1-1} \chi(i)\chi(j)q^{w_2w_1i+w_2w_3j}
\times \int_X \chi(y) \left[y + w_2x + \frac{w_2i}{w_3} + \frac{w_2j}{w_1} \right]^n d\mu_{q^{w_1w_3}}(y)
= \sum_{k=0}^{n} \binom{n}{k} [w_3w_1]_q^{k-1} [w_2]_q^{n-k} \beta_{k,\chi,q^{w_1w_3}} (w_2x) S_{n,k,q^{w_1w_3}}(w_1, w_2, : d|\chi).
\]

Therefore, by (16) and (17), we obtain the following theorem.

Theorem 2.3. For \(d, w_1, w_2, w_3 \in \mathbb{N} \) and \(n \geq 0 \), the following expressions
\[
\sum_{k=0}^{n} \binom{n}{k} [w_{\sigma(2)}w_{\sigma(3)}]_q^{k-1} [w_{\sigma(1)}]_q^{n-k} \beta_{k,\chi,q^{w_{\sigma(2)}w_{\sigma(3)}}} (w_{\sigma(1)}x) S_{n,k,q^{w_{\sigma(1)}}}(w_{\sigma(2)}, w_{\sigma(3)}, : d|\chi)
\]
are all the same for any \(\sigma \in S_3 \).

Remark 2.4. Recently, several authors have studied the \(q \)-extension of Bernoulli polynomials and identities of symmetry for Bernoulli numbers and polynomials (see [1-22]).

References

Received: May 5, 2014