The Bhatia–Thornton Structure Factor

“Number Density – Concentration” for Hard-Core Fluid in the Random Phase Approximation

S. P. Kazantsev

Ural Federal University, Mira str. 19, 620002, Ekaterinburg, Russia

Copyright © 2014 S. P. Kazantsev. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The expression for the Bhatia-Thornton partial structure factor “number density – concentration” for arbitrary two-component hard-core fluid in the random phase approximation is obtained.

Keywords: Hard-core mixture, random phase approximation, Bhatia-Thornton partial structure factors

As we noted in previous papers, the Ashcroft-Langreth (AL) partial structure factors \[S_{ij}(q), \] can be written for the hard-core (HC) model potential in the random phase approximation (RPA) [2]:

\[
S_{ij}^{\text{RPA-HC}}(q) = \frac{1 - c_i \rho \rho_{ij}^{\text{HS}}(q) + c_i \rho \beta \phi_{ij}(q)}{Z(q)}, \quad (1)
\]

\[
S_{ij}^{\text{RPA-HC}}(q) = \frac{c_i c_j \rho \rho_{ij}^{\text{HS}}(q) - c_i \rho \beta \phi_{ij}(q)}{Z(q)}, \quad (2)
\]

\[
Z(q) = \prod_{k=1,2} \left(1 - c_k \rho \rho_{ik}^{\text{HS}}(q)\right) - c_i c_j \rho^2 \rho_{ij}^{\text{HS}}(q) + \prod_{k=1,2} \left(1 + c_k \rho \beta \phi_{ik}(q)\right) - c_i c_j \rho^2 \beta^2 \phi_{ij}(q) - \right.
\]

\[
-1 - c_i c_j \rho^2 \beta \left(\sum_{k,l} c_{ik}^{\text{HS}}(q)\phi_{jl}(q) - 2c_{ij}^{\text{HS}}(q)\phi_{ij}(q)\right), \quad (3)
\]

where \(c_i \) is the concentration of the \(i \)-th component, \(\rho \) - the mean atomic...
density of a binary mixture, $\beta = (k_B T)^{-1}$, k_B - Boltzmann constant, T - temperature, $c_{ij}^{\text{HS}}(q)$ and $c_{ii}^{\text{HS}}(q)$ - hard-sphere (HS) model partial direct correlation functions, $\phi_{ij}(q)$ and $\phi_{ii}(q)$ - Fourier transforms of the HC-outside parts of the HC partial pair potentials, $i,j=1,2$ ($i \neq j$).

The Bhatia-Thornton [3] structure factor “number density – concentration”, $S_{nc}(q)$, is usually expressed via AL structure factors by the following way:

$$S_{nc}(q) = c_1 c_2 \left[S_{11}(q) - S_{22}(q) + \frac{(c_2 - c_1)S_{12}(q)}{\sqrt{c_1 c_2}} \right]. \quad (4)$$

In terms of the work [2] Eq. (4) can be rewritten as

$$S_{nc}(q) = c_i c_j \left[S_{ii}(q) - S_{jj}(q) + \frac{(c_j - c_i)S_{ii}(q)}{\sqrt{c_i c_j}} \right]. \quad (5)$$

Combining Eq. (5) with Eqs. (1)-(3) we obtain the RPA-HC expression for $S_{nc}(q)$:

$$S_{nc}^{\text{RPA-HC}}(q) = c_i c_j \rho \left\{ c_i c_j^{\text{RPA-HC}}(q) - c_i c_j^{\text{RPA-HC}}(q) + 2(c_j - c_i)c_j^{\text{RPA-HC}}(q) \right\} \frac{Z(q)}{Z(q)} \quad (6)$$

where

$$c_i^{\text{RPA-HC}}(r) = c_i^{\text{HS}}(r) - \beta \phi_{ii}(r), \quad (7)$$

and

$$c_j^{\text{RPA-HC}}(q) = c_j^{\text{HS}}(q) - \beta \phi_{jj}(q). \quad (8)$$

References

Received: May 11, 2014