The Softness of the Wills-Harrison

Effective Pair Potential in Liquid Ni

Nikolay Dubinin

Ural Federal University, Mira st. 19, 620002 Ekaterinburg, Russia

Copyright © 2014 Nikolay Dubinin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

It is found that an account of the non-diagonal couplings between \(d\) electrons sited on different atoms in a transition metal leads to increase of the softness of repulsive part in the Wills-Harrison effective pair potential of liquid Ni.

Keywords: Transition metal, Wills-Harrison model, \(d\)-state coupling

In [1] the Wills-Harrison (WH) model [2] was corrected by means the introduction the probability \(p\) that all 25 \(d-d\) couplings between two different atoms are equiprobable and probability \((1-p)\) that only 5 equiprobable diagonal couplings are possible. Then, the softness of the repulsive part of the WH effective pair potential, \(\varphi_{\text{WH}}(r)\), were considered at different \(p\) for liquid Fe [3] and liquid Co [4].

Here, we study how the magnitude \(p\) influences the softness of the repulsive part of \(\varphi_{\text{WH}}(r)\) for liquid Ni at absolute temperature \(T=1873\)K.

The repulsive part of the pair potential \(\varphi(r)\) is considered in the reduced form that is \(\beta[\varphi(r) - \varphi(d)]\), where \(\beta = 1/(k_B T)\), \(k_B\) - Boltzmann constant, \(d\) - position of the first minimum of \(\varphi(r)\). The input parameters are taken from works [2] and [5] and listed in Table 1. The experimental value of the mean atomic volume equal to 85.24 a.u. is taken from the work [6]. The coordination number is taken equal to 12.
The dependence $\beta[\varphi_{\text{WH}}(r) - \varphi_{\text{WH}}(d)]$ on p is shown in Fig. 1. It is found that for liquid Ni an account of the non-diagonal couplings between d electrons leads to increase the softness of the repulsive part of the WH effective pair potential almost in the same degree as for liquid Co [4] and in less degree than for liquid Fe [3].

Table 1. Input data for the calculation

<table>
<thead>
<tr>
<th>R_C (a.u.)</th>
<th>α (a.u.)</th>
<th>z_s</th>
<th>z_d</th>
<th>r_d (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.03</td>
<td>0.207</td>
<td>1.4</td>
<td>8.6</td>
<td>1.342</td>
</tr>
</tbody>
</table>

Figure 1. $\beta[\varphi_{\text{WH}}(r) - \varphi_{\text{WH}}(d)]$ in liquid Ni ($p = 0$ – solid line; $p = 0.5$ – dotted line; $p = 1$ – dashed-dotted line).
The softness of the Wills-Harrison effective pair potential in liquid Ni

References

Received: June 28, 2013