Note on q-Deformed Pseudo-Differential Operators

and its Supersymetric Extension

A. EL Boukili, M. Nach and M. B. Sedra

Université Ibn Tofail, Faculté des Sciences, Département de Physique,
Laboratoire des Hautes énergies, Sciences de l’Ingénierie et Réacteurs (LHESIR),
Kénitra, Morocco

* Corresponding author. e-mail: aelboukili@gmail.com.

Copyright © 2013 A. EL Boukili et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we present some interesting results on q-deformed pseudo differential operators and its algebraic structures. We present also the super symmetric extension of such algebra.

Keywords: pseudo-differential operators, q-deformation, supersymmetry

1. The algebra of pseudo-differential operators (PDO)

Noting $\mathcal{A}_s^{(p,q)}$ the algebra of pseudo-differential operators PDO with three quantum numbers s, p and q describing respectively the conformal weight, the lower and higher degrees of type[1,2,3]

$$\mathcal{L} = \sum_{i=p}^{q} u_{s,i} \partial^i.$$ \hspace{1cm} (1)

The symbol ∂^i stands for the differentiation with respect to the coordinates x. The ring of analytic functions $\mathcal{A}^{(0,0)} = \mathcal{R}$ of arbitrary conformal weight and vanishing lowest and highest degrees $(0,0)$. The huge Lie algebra of PDO of arbitrary conformal weight and degrees is:

$$\mathcal{A} = \bigoplus_{s \in \mathbb{Z}} \bigoplus_{p \leq q} \mathcal{A}_s^{(p,q)}.$$
The Leibnitz rules:

\[\partial^k u_s(z) = \sum_{i=0}^{k} \binom{k}{i} u_s^{(i)}(z) \partial^{k-i} \]

(2)

for local differential operators \(k \geq 0 \) and

\[\partial^{-k} u_s(z) = \sum_{i=0}^{\infty} (-1)^i \binom{k+l-1}{i} u_s^{(i)}(z) \partial^{-k+i} \]

(3)

for the non-local differential operators \(i \geq 0 \) such that

\[\partial^k \partial^{-k} u_s(z) = u_s(z) \]

(4)

3. q-deformed pseudo-differential operators

3.1. The q-derivation:

Following [2,3,4], the q-derivation is defined as follows

\[\partial_q(f) = \frac{f(qx) - f(x)}{(q-1)x} \]

(5)

with \(q \neq 1 \). As an operator, \(\partial_q \) acts as follows

\[\partial_q \circ f = (\partial_q f) + \eta_q(f) \partial_q, \]

(6)

The q-shift operator \(\eta_q \) is defined as

\[\eta_q(f(x)) = f(qx). \]

(7)

Note that \(\eta \) is a linear function in term of \(f \). The non-local differential operator \(\partial_q^{-1} \) acts as follows

\[\partial_q^{-1} \circ f = \eta_q^{-1} \partial_q^{-1} + \sum_{k \geq 1} (-1)^k q^{-k(k+1)/2} (\eta_q^{-k-1}(\partial_q f)) \partial_q^{-k-1}. \]

(8)

We simply derive the previous \(q \)-deformed Leibnitz rule for non local operators by using the following relation

\[(\partial_q^{-1} \circ \partial_q) f = (\partial_q \circ \partial_q^{-1}) f = f. \]

(9)

Note by the way that \(\eta_q \) does not commute with \(\partial_q \),

\[\partial_q^m(\eta_q^k(f)) = q^m \eta_q^k(\partial_q^m f), \quad k,m \in \mathbb{Z}. \]

(10)

In general we have

\[\partial_q^m \circ f = \sum_{k \geq 0} \binom{n}{k} \eta_q^{n-k}(\partial_q^k f) \partial_q^{n-k}, \]

(11)

for all \(n \). In the last equation, the q-binomials take the form
Note on \(q \)-deformed pseudo-differential operators

\[
\binom{n}{k}_q = \frac{(n)_q (n-1)_q \ldots (n-k+1)_q}{(1)_q (2)_q \ldots (k)_q}, \quad \binom{n}{0}_q = 1,
\]

and the \(q \)-numbers are given by

\[
(n)_q = \frac{q^n - 1}{q - 1},
\]

3.2 The algebra of \(q \)-PDO

This is the algebra of \(q \)-differential operators of arbitrary conformal weight and degrees[4],

\[
\mathcal{A} [\partial_q, u_i] = \bigoplus_{m \in \mathbb{Z}} \bigoplus_{n \leq m} \mathcal{A}^{(m,n)}_s [\partial_q, u_i]
\]

with

\[
\mathcal{A}^{(m,n)}_s [\partial_q, u_i] = \left\{ \sum_{i=0}^{n} u_{s-i} \partial_q^i \mid u_{s-i} \in \mathcal{A}^{(0,0)} \right\}
\]

The Classical Limit:

Once setting \(q \to 1 \), we recover the standard formulas, we have[4]

\[
\partial_q \circ f \to \partial \circ f, \quad \text{with} \quad \eta(f) = f
\]

4. Super symmetric extension of \(q \)-PDO

We define the ring \(\Sigma[D_q] \) of differential super symmetric \(q \)-differential operators as polynomials in \(D_q = \partial_q + \theta \partial_q \)

\[
\Sigma[D_q] = \bigoplus_{n \in \mathbb{Z}} \bigoplus_{m \leq n} \Sigma^{(m,n)}_s[D_q] \quad m, n \in \mathbb{Z}
\]

where \(\Sigma^{(m,n)}_s[D_q] \) is the space of super symmetric \(q \)-differential operators type

\[
\Sigma^{(m,n)}_s[D_q] \quad \text{behaves as a} \quad (1 + q - p) \quad \text{dimensional superspace}. \quad \text{Note also that the ring } \mathcal{R} \text{ of all graded superfields can be decomposed as}
\]

\[
\mathcal{R} = \Sigma^{(0,0)}[D_q] \bigoplus \bigoplus_{k \in \mathbb{Z}} \Sigma^{(0,0)}_k[D_q]
\]

where \(\Sigma^{(0,0)}_k \) is the set of superfield \(u_k(\hat{z}) \) indexed by half integer conformal spin \(k/2, k \in \mathbb{Z} \). In the classical limit, we find the results obtained in the references[5,6,7]. More information on this super symmetric algebra will be presented in our next paper.
5. Concluding remarks

This work aims principally to present a some useful formulas of q-deformed pseudo differential operators and its super symmetric extension.

We note that the q-deformed Lie bracket $[\ldots]$ acts as

$$[\ldots]: \mathcal{A}_s^{(m,n)} \times \mathcal{A}_s^{(m,n)} \rightarrow \mathcal{A}_s^{(m,2n)},$$

(20)

and if we imposing the closure, one gets strong constraints on the spin s and the degrees parameters (m,n) namely $s=0$ and $m \leq n \leq 0$.

Further note that the space of PDO admit a Lie algebra’s structure with respect to the bracket for the vector fields of conformal weight 0 and for the scalar differential pseudo operators of higher degree -1.

The conformal factorization: $(f_0 \partial_q + f_1)^o (g_0 \partial_q + g_1) = h_0 \partial_q^2 + h_1 \partial_q + h_2$ with h_0, h_1 and h_2 are the functions in f_0, f_1, g_0 and g_1 are called Miura transformation and it is invariant under the q-PDO transformations.

References

Received: February 24, 2013