The Entropy of the Square-Well Fluid

I. The Random Phase Approximation

Nikolay Dubinin1,2

1Ural Federal University, Mira st. 19, 620002 Ekaterinburg, Russia
2Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Amundsen st. 101, 620016 Ekaterinburg, Russia
ned67@mail.ru

Anatoliy Yuryev1,2

1Ural Federal University, Mira st. 19, 620002 Ekaterinburg, Russia
2Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Amundsen st. 101, 620016 Ekaterinburg, Russia
yurev_anatolii@mail.ru

Vladimir Filippov1,2

1Ural Federal University, Mira st. 19, 620002 Ekaterinburg, Russia
2Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Amundsen st. 101, 620016 Ekaterinburg, Russia
vvfilippov@mail.ru

Abstract

The analytical expression of the entropy is obtained for the square-well fluid within the random phase approximation.

Keywords: Entropy, square-well model, random phase approximation

In a general case the entropy of an equilibrium system, S, is (hereafter, all thermodynamic quantities are taken per atom) (see, for example, [1]):

$$ S = S_{lg} - \frac{1}{2} k_b \rho^2 \int \int g^{(2)}(\vec{r}_1,\vec{r}_2) \ln \left[g^{(2)}(\vec{r}_1,\vec{r}_2) \right] d\vec{r}_1 d\vec{r}_2 - $$
where S_{IG} is the entropy of the ideal gas (IG), ρ - mean atomic density, $g(r) = g^{(2)}(|r_1 - r_2|)$ - pair correlation function, $g^{(3)}(r_1, r_2, r_3)$ - three-particle correlation function, k_B - Boltzmann constant. Eq.(1) is not useful in practice.

If expressions for pressure or internal energy are known, the entropy can be found [1] by integrating one of the following relations:

$$\frac{\partial S}{\partial T} = \frac{\partial P}{\partial T} \rho,$$ \hspace{1cm} (2)

$$\frac{\partial S}{\partial T} = \frac{1}{T} \left(\frac{\partial (K + U)}{\partial T} \right) \rho,$$ \hspace{1cm} (3)

where T is the absolute temperature, P – pressure, K - kinetic energy, U - potential energy. In the pair-interaction approximation

$$U = 2\pi \rho \int_0^\infty \phi(r) g(r) r^2 \, dr,$$ \hspace{1cm} (4)

where $\phi(r)$ is the pair interatomic potential.

To obtain the IG entropy, eq.(3) can be used taking into account that $U_{IG} = 0$. For the hard-sphere (HS) model eq.(3) is not applicable since expression under integral sign is singular and therefore it is necessary to use eq.(2) to obtain an additional HS term to S_{IG}, ΔS_{HS}. The difference between S_{HS} and the entropy of the square-well (SW) fluid can be found again from eq.(3).

The SW model is determined by means the following pair potential:

$$\varphi_{SW}(r) = \begin{cases} \infty, & r < \sigma \\ \varepsilon, & \sigma \leq r < \lambda \sigma \\ 0, & r \geq \lambda \sigma \end{cases},$$ \hspace{1cm} (5)

where ε, λ and σ are the SW parameters.

In the q space

$$U_{SW} = \frac{2}{3} \pi \rho \sigma^3 \varepsilon (\lambda^3 - 1) + \frac{1}{4\pi^2} \int_0^\infty [a_{SW}(q) - 1] \phi_{SW}(q) q^2 \, dq,$$ \hspace{1cm} (6)

where

$$\phi_{SW}(q) = \frac{4\pi \varepsilon}{q^3} - 4\pi \varepsilon \left[\sin(q\lambda\sigma) - \sin(q\sigma) - q\lambda\sigma \cos(q\lambda\sigma) + q\sigma \cos(q\sigma) \right],$$ \hspace{1cm} (7)

$a_{SW}(q)$ is the structure factor of the SW system. Within the random phase approximation (RPA) [2] it is written as

$$a_{SW-RPA}(q) = \frac{1}{1 - \rho c_{HS}(q) + \beta \rho \phi_{SW}(q)},$$ \hspace{1cm} (8)
where $\beta = (k_B T)^{-1}$, $c_{HS}(r)$ is the direct correlation function of the HS fluid related to the HS structure factor as follows:

$$a_{HS}(q) = \frac{1}{1 - \rho c_{HS}(q)}.$$

(9)

Then

$$\left(\frac{\partial U_{SW-RPA}}{\partial T}\right)_\rho = \frac{\rho k_B}{4\pi^2} \int_0^\infty \frac{\phi_{SW}^2(q)q^2 dq}{k_B(T(1 - \rho c_{HS}(q)) + \rho \phi_{SW}(q))^2},$$

(10)

$$S_{SW-RPA} = S_{HS} + \int \frac{dT}{T} \left(\frac{\partial U_{SW-RPA}}{\partial T}\right)_\rho = S_{HS} + \frac{k_B \rho}{4\pi^2} x$$

$$\int_0^\infty \left[-\frac{1}{\rho^2 \phi_{SW}^2(q)} \ln \frac{k_B}{a_{SW-RPA}(q)} + (1 - \rho c_{HS}(q)) a_{SW-RPA}(q) + \text{Const} \right] \phi_{SW}^2(q)q^2 dq.$$

(11)

The integration constant is being obtained from the condition that $S_{SW} = S_{HS}$ at $a_{SW-RPA}(q) = a_{HS}(q)$:

$$\text{Const} = \frac{1}{\rho^2 \phi_{SW}^2(q)} \left(\ln \frac{k_B}{a_{HS}(q)} + 1 \right).$$

(12)

Eq. (11) can be simplified and the final expression is

$$S_{SW-RPA} = S_{HS} + \frac{k_B}{4\pi^2} \int_0^\infty q^2 \left(\beta a_{SW-RPA}(q) \phi_{SW}(q) + \frac{1}{\rho} \ln \frac{a_{SW-RPA}(q)}{a_{HS}(q)} \right) dq.$$

(13)

Eq.(12) can be regarded the analytical expression if to use the analytical form for $c_{HS}(q)$ obtained in [3, 4].

References

Received: March 28, 2013