Probabilities of Diagonal and Non-Diagonal Couplings between d Electrons in Transition Metal

II. The d-Band-Center-Shift Energy

Nikolay Dubinin1,2

1Ural Federal University, Mira st. 19, 620002 Ekaterinburg, Russia
2Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Amundsen st. 101, 620016 Ekaterinburg, Russia
ned67@mail.ru

Abstract

It is shown that the full account of the non-diagonal couplings between d electrons sited on different atoms in a transition metal implemented in the framework of the Wills-Harrison model leads not only to vanishing the d-band term in the internal energy but to vanishing the whole d-electron-depended part of the internal energy.

Keywords: Transition metal, Wills-Harrison model, d-state coupling

The d-band energy considered in the previous paper (henceforth referred to as I) is not the single contribution due to d electrons to the transition-metal internal energy in the Wills-Harrison (WH) model [1]. The second d-electron-depended WH energy contribution is the energy arisen because of the shift in the center of gravity of the d band due to nonorthogonality of d-like states, E_c (hereafter, per atom in atomic units):

$$E_c = \frac{z_d}{2N} \sum_{m=1}^{N} \sum_{f=1}^{N} V_c(r_{mf}),$$ \hspace{1cm} (1)

where z_d is the effective d-electron valence, N - number of atoms,

$$V_c(r) = \frac{r_d^6}{r^8} K_c,$$ \hspace{1cm} (2)
where \(r_d \) is the \(d \)-state radius, \(K_c \) - combinatoric coefficient, which as well as the coefficient \(K_b \) (paper I) in the WH approximation depends on diagonal only couplings between \(d \) electrons sited on different atoms:

\[
K_{c,WH}^{WH} = -2 \sum_{m=2}^{3} \frac{y_m x_m}{5},
\]

(3)

where \(m \) is the magnet quantum number, \(y_m = y_{|m|} \),

\[
y_0 = -45/\pi, \quad y_1 = 30/\pi, \quad y_2 = -15/2\pi,
\]

(4)

\[
x_m = x_{|m|} = \frac{1}{8} \left(1 + \frac{4m^2 - 1}{9} \right) y_m,
\]

(5)

From (3)-(5)

\[
K_{c,WH}^{WH} = 225/\pi^2.
\]

(6)

Taking into account the probability \(p \) that all 25 \(d-d \) couplings between two different atoms in metal are equiprobable, the coefficient \(K_c \) is expressed as follows [2]:

\[
K_c = -\frac{2}{5} \left[y_0 x_0 + \left(2 - \frac{6p}{5} \right) (y_1 x_1 + y_2 x_2) + \right.
\]

\[
+ \frac{2p}{5} (y_0 (x_1 + x_2) + x_0 (y_1 + y_2)) + \frac{4p}{5} (y_1 x_2 + y_2 x_1) \right].
\]

(7)

If now to apply (4) and (5) to (7), the result will be similar to one obtained in the paper I:

\[
K_c = K_{c,WH}^{WH} (1-p).
\]

(8)

It denotes that at \(p = 1 \) not only the \(d \)-band energy, \(E_b \), is equal to zero, but also \(E_c \) and, consequently, the whole \(d \)-electron-depended part of the internal energy in the WH model, which is equal to \(E_b + E_c \).

Acknowledgments

This study is supported by the Program of UD RAS (project No 12-T-3-1022).

References

Received: March 28, 2013