Two-Component Form of the New Dirac Equation

OUSMANE MANGA Adamou

Department of Physics, Faculty of Sciences
Abdou Moumouni University of Niamey P.O. Box 10662, Niger
manga_adamou@yahoo.com

MOUSSA Aboubacar

Department of Mathematics and Computer Sciences, Faculty of Sciences
Abdou Moumouni University of Niamey P.O. Box 10662, Niger
msaboubacar@yahoo.fr

ABOUBACAR Almoustapha

Department of Physics, Faculty of Sciences
Abdou Moumouni University of Niamey P. O. Box 10662, Niger
bmouthe@yahoo.fr

SAMSONENKO Nicolai Vladimirovich

Department of Theoretical Physics, Russian Friendship University, 3, Ordjonokidze, 117923 Moscow, Russia

Copyright © 2013 OUSMANE MANGA Adamou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

The two-component form of the new Dirac equation is obtained for a zero mass particle using a unitary transformation.

Mathematics Subject Classification: MSC: 47B15, 47B25; PACS: 03.65.Ca, 03.65.Pm

Keywords: Dirac equation, coupled differential equations, unitary transformation

1. Introduction

The new relativistic wave equation proposed by Dirac in 1971 [2] is not symmetric in term of positive and negative values of energy. This equation describes a spinless particle with positive energy, internal structure and non-zero rest mass. The equation has the following form:

\[
\left\{ \frac{\partial}{\partial x_0} + \alpha_r \frac{\partial}{\partial x_r} + m\beta \right\} q \psi = 0
\]

(1)

where \(\alpha_r \) (\(r = 1, 2, 3 \)) are real \(4 \times 4 \) matrices and \(\beta \) is an antisymmetric matrix given by

\[
\beta = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
\end{pmatrix}
\]

(2)

Note that \(\beta^2 = -I \), where I is the unity matrix. The quantity \(q \) is a colon vector. The symbol \(q \) will denote a line vector \((q_1, q_2, q_3, q_4) \) where \(q_1, q_3 = p_1 \) and \(q_2, q_4 = p_2 \) are the dynamic variables of two harmonic oscillators describing the internal structure of the particle. The quantities \(q_a \) (\(a = 1, 2, 3, 4 \)) satisfy following commuting law

\[
[q_a, q_b] = q_a q_b - q_b q_a = i\beta_{ab}
\]

(3)

The wave function \(\psi \) is one-component and depends on \(x_0, x_r \) and two commuting quantities \(q_a \) (for example \(q_1 \) and \(q_2 \)). The matrices \(\alpha_r \) (\(r = 1, 2, 3 \)) and \(\beta \) satisfy the Clifford-Dirac algebra relations:
Two-component form of the new Dirac equation

\[\alpha_\alpha + \alpha_\beta \alpha_\gamma = 2\delta_{r,s} \]
\[\alpha_\beta + \beta_\alpha \alpha_\gamma = 0 \quad (r,s = 1, 2, 3) \]
\[(4) \]

Introducing the notations \(\partial^\mu \equiv \frac{\partial}{\partial x^\mu} \) and \(\alpha_\alpha = I \) the unity matrix, the equation (1) takes the form:

\[(\alpha_\mu \partial^\mu + m\beta)q_\psi = 0 \quad (\mu = 0, 1, 2, 3) \]
\[(5) \]

2. Two-component equation

One of the possible choices of the real symmetric \(\alpha \) matrix is the following:

\[\alpha_1 = \begin{pmatrix} 0 & -\sigma_3 \\ -\sigma_3 & 0 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} \sigma_0 & 0 \\ 0 & -\sigma_0 \end{pmatrix} \]
\[(6) \]

where \(\sigma_0 = I \) and \(\sigma_r \) \((r = 1, 2, 3) \) are the Pauli matrices.

Next we consider the equation (5) in the case of zero mass. We get the equation

\[\alpha_\mu \partial^\mu q_\psi = 0 \]
\[(7) \]

With the help of the unitary transformation \(\alpha_\mu' = U^{-1}_\mu \alpha_\mu U \), where

\[U = \frac{1}{2} \begin{pmatrix} 1 & i & 1 & i \\ 1 & -i & -1 & i \\ 1 & i & -1 & -i \\ -1 & i & -1 & i \end{pmatrix}, \]

we transform the matrices \(\alpha_r \) and \(\beta \) in the matrices \(\alpha'_r \) and \(\beta' \) respectively. We get:

\[\alpha'_1 = \begin{pmatrix} 0 & \sigma_1 \\ \sigma_1 & 0 \end{pmatrix}, \quad \beta' = \begin{pmatrix} 0 & -\sigma_0 \\ \sigma_0 & 0 \end{pmatrix} \]

Similarly, the column \(q \) is transformed into a column \(q' = Uq \), equal to:

\[q' = \frac{1}{2} \begin{pmatrix} q_1 + iq_2 + q_3 + iq_4 \\ q_1 - iq_2 - q_3 + iq_4 \\ q_1 + iq_2 - q_3 - iq_4 \\ -q_1 + iq_2 - q_3 + iq_4 \end{pmatrix} \]

Quantities \(q'_a \) \((a = 1, 2, 3, 4) \) satisfy the relation
where the matrice Δ is equal to:

$$\Delta = \begin{pmatrix} -i\sigma_2 & 0 \\ 0 & -i\sigma_2 \end{pmatrix}$$

After the transformation, the equation (7) takes the form

$$\alpha' \tilde{\alpha}^\mu q^\mu \psi = 0$$

(8)

Multiplying (8) on the left by the matrix β', and introducing the notation

$$\gamma_\mu = \beta' \alpha'$$

we get the following equation:

$$\gamma_\mu \tilde{\alpha}^\mu q^\mu \psi = 0$$

(9)

where

$$\gamma_0 = \begin{pmatrix} 0 & -\sigma_0 \\ \sigma_0 & 0 \end{pmatrix}, \quad \gamma_k = \begin{pmatrix} -\sigma_k & 0 \\ 0 & \sigma_k \end{pmatrix} \quad (k = 1, 2, 3)$$

(10)

As might be expected, equation (7) is invariant under similarity transformation of the α matrices.

Next, we introduce the operators P_\pm (see [1]) given by $P_\pm = \frac{I \pm \gamma_5}{\sqrt{2}}$, where $\lambda_5 = i \gamma_0 \gamma_1 \gamma_2 \gamma_3$.

The matrice γ_5 anticommute with all matrices γ_μ. Acting operators P_\pm on the left of $q^\mu \psi$, we obtain:

$$P_+ q^\mu \psi = \begin{pmatrix} Q_1 \\ Q_2 \\ \bar{Q}_1 \\ \bar{Q}_2 \end{pmatrix} \psi, \quad P_- q^\mu \psi = \begin{pmatrix} \bar{Q}_1 \\ \bar{Q}_2 \\ Q_1 \\ Q_2 \end{pmatrix} \psi$$

(11)

Here, for the elements of four-column, we used the following notations:

$$Q_1 = \frac{1}{\sqrt{2}}(q'_1 + q'_3); \quad \bar{Q}_1 = \frac{1}{\sqrt{2}}(q'_1 - q'_3);$$

$$Q_2 = \frac{1}{\sqrt{2}}(q'_2 + q'_4); \quad \bar{Q}_2 = \frac{1}{\sqrt{2}}(q'_2 - q'_4).$$

Now if we multiply (9) by P_\pm on the left and using (11), we obtain two independent equations for two-component quantities $Q \psi$ and $\bar{Q} \psi$

$$\left(\tilde{\alpha}^0 + \sigma, \tilde{\alpha}' \right) Q \psi = 0$$

(12a)
Two-component form of the new Dirac equation

\[\left(\not{\partial} - \sigma \not{\partial} \right) \varphi = 0 \]

(12b)

where \(Q = \begin{pmatrix} a \\ b \end{pmatrix}, \varphi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix} \)

The quantities \(Q_a \) and \(Q_b \) (\(a = 1, 2 \)) verify relations:

\[[Q_a, Q_b] = i \eta_{ab}, \]

\[[Q_a, \varphi_b] = i \eta_{ab}, \quad (a, b = 1, 2), \]

\[[Q_a, \varphi_b] = 0 \]

where \(\eta = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \) and \(\eta^2 = -1 \).

It is obvious, for the continuation, to consider only the equation (12a). It can be written as:

\[\Pi_a \varphi = 0, \]

(13)

where \(\Pi_a = (\sigma \not{\partial}^\mu) Q_b, \quad (a, b = 1, 2) \).

The equation (13) is a system of two coupled differential equation for the one-component function \(\psi(x, Q_1) \). The compatibility condition of these equations is:

\[[\Pi_a, \Pi_b] \psi = 0, \quad (a, b = 1, 2) \]

(14)

It leads to the Klein-Gordon equation:

\[\partial_{\mu} \partial^\mu \psi = 0, \quad (\mu = 0, 1, 2, 3) \]

(15)

Taking the wave function in the form of a plane wave

\[\psi = \varphi(q_1, q_2) \exp\left\{ -ip^\mu x_\mu \right\} \]

and using the following representation:

\[q_1 = -i \partial/\partial q_1, \quad q_2 = -i \partial/\partial q_2, \]

we seek a solution of the equation (13), which can already be written as

\[(q_1 + i \partial/\partial q_1 + iq_2 + \partial/\partial q_2) \varphi = 0, \]

(16)

provided

\[p_0 = p_1 \neq 0, \quad p_2 = p_3 = 0 \]

(17)

The solution of the equation (16) is:

\[\varphi = \exp\left\{ \frac{i}{2} [Q_1^2 + Q_2^2] \right\}. \]

(18)

Then the general solution of the equation (13) with the conditions (17) will be:
\[\psi = \exp \left\{ \frac{i}{2} \left[Q_i^2 + Q_i^2 \right] \right\} \times \exp \left\{ -ip^\mu x_\mu \right\} \] \hspace{1cm} (19)

References

Received: February 10, 2013