Symmetric Identities of the q-Euler Polynomials

Dae San Kim
Department of Mathematics, Sogang University
Seoul 121-742, Republic of Korea
dskim@sogang.ac.kr

Taekyun Kim
Department of Mathematics, Kwangwoon University
Seoul 139-701, Republic of Korea
tkkim@kw.ac.kr

Sang-Hun Lee
Division of General Education, Kwangwoon University
Seoul 139-701, Republic of Korea
shlee58@kw.ac.kr

Jong-Jin Seo
Department of Applied Mathematics
Pukyong National University
Pusan, Republic of Korea
seo2011@pknu.ac.kr

Copyright © 2013 Dae San Kim, Taekyun Kim, Sang-Hun Lee and Jong-Jin Seo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study some symmetric identities of q-Euler numbers and polynomials. From these properties, we derive several identities of q-Euler numbers and polynomials.
1 Introduction

The Euler polynomials are defined by the generating function to be

\[
\frac{2}{e^t + 1} e^{xt} = e^{E(x)t} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}, \quad (\text{see } [2-6]).
\]

(1.1)

with the usual convention about replacing \(E_n(x) \) by \(E_{n,q}(x) \).

When \(x = 0 \), \(E_n = E_n(0) \) are called the Euler numbers. Let \(q \in \mathbb{C} \) with \(|q| < 1 \). For any complex number \(x \), the \(q \)-analogue of \(x \) is defined by \([x]_q = \frac{1-q^x}{1-q} \). Note that \(\lim_{q \to 1} [x]_q = x \). Recently, T. Kim introduced a \(q \)-extension of Euler polynomials as follows:

\[
F_q(t, x) = [2]_q \sum_{n=0}^{\infty} (-1)^n q^n e^{[n+x]_q t} = \sum_{n=0}^{\infty} E_{n,q}(x) \frac{t^n}{n!}, \quad (\text{see } [7,8]).
\]

(1.2)

When \(x = 0 \), \(E_{n,q} = E_{n,q}(0) \) are called the \(q \)-Euler numbers. From (1.2), we note that

\[
E_{n,q}(x) = (q^x E_q + [x]_q)^n
= \sum_{l=0}^{n} \binom{n}{l} q^x E_{l,q} [x]_q^{n-l}, \quad (\text{see } [7,8]),
\]

(1.3)

with the usual convention about replacing \(E_q^l \) by \(E_{l,q} \).

In [8], Kim introduced \(q \)-Euler zeta function as follows:

\[
\zeta_{E,q}(s, x) = \frac{1}{\Gamma(s)} \int_0^{\infty} t^{s-1} F_q(-t, x) \, dt
= [2]_q \sum_{n=0}^{\infty} \frac{(-1)^n q^n}{[n+x]_q^s},
\]

(1.4)

where \(x \neq 0, -1, -2, \ldots \), and \(s \in \mathbb{C} \).

From (1.4), we have

\[
\zeta_{E,q}(-m, x) = E_{m,q}(x),
\]

(1.5)

where \(m \in \mathbb{Z}_{\geq 0} \).
Recently, Y. Simsek gave recurrence symmetric identities for \((h, q)\)-Euler polynomials and the alternating sums of powers of consecutive \((h, q)\)-integers(see [9]) and Y. He gave some interesting symmetric identities of Carlitz’s \(q\)-Bernoulli numbers and polynomials(see [1]). In this paper, we study some new symmetries of the \(q\)-Euler numbers and polynomials, which is the answer to an open question for the symmetric identities of Carlitz’s type \(q\)-Euler numbers and polynomials in [5]. By using our symmetries for the \(q\)-Euler polynomials we can obtain some identities between \(q\)-Euler numbers and polynomials.

2 Symmetric identities of \(q\)-Euler polynomials

In this section, we assume that \(a, b \in \mathbb{N}\) with \(a \equiv 1 \pmod{2}\) and \(b \equiv 1 \pmod{2}\). First, we observe that

\[
\frac{1}{[2]_q^a} \zeta_{E,q^a}(s, bx + \frac{b+1}{a}) = \sum_{n=0}^{\infty} \frac{(-1)^n q^{na}}{[n + bx + \frac{b}{a}]_q^s} = \sum_{n=0}^{\infty} [b+1]_q^s \sum_{i=0}^{b-1} \frac{(-1)^{i+bn} q^{a(i+bn)}}{[ab(x+n)+bj+ai]_q^s}.
\]

(2.1)

Thus, by (2.1), we get

\[
\frac{[b]_q^s}{[2]_q^a} \sum_{j=0}^{a-1} (-1)^j q^{bj} \zeta_{E,q^a}(s, bx + \frac{b+1}{a}) = [b]_q^s \sum_{i=0}^{b-1} \sum_{n=0}^{\infty} (-1)^{i+bn} q^{a(i+bn)} \sum_{j=0}^{a-1} \frac{q^{aj+bn}(s, ax + \frac{a}{b})}{[ab(x+n)+bj+ai]_q^s}.
\]

(2.2)

By the same method as (2.2), we get

\[
\frac{[a]_q^s}{[2]_q^b} \sum_{j=0}^{b-1} (-1)^j q^{aj} \zeta_{E,q^b}(s, ax + \frac{a+1}{b}) = [a]_q^s \sum_{i=0}^{b-1} \sum_{n=0}^{\infty} q^{bi+aj+bn} (-1)^{i+n+j} \sum_{j=0}^{a-1} \frac{q^{aj+bn}(s, ax + \frac{a}{b})}{[ab(x+n)+bj+ai]_q^s}.
\]

(2.3)

Therefore, by (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1. For \(a, b \in \mathbb{N}\) with \(a \equiv 1 \pmod{2}\), \(b \equiv 1 \pmod{2}\),

\[
[2]_q^b [b]_q^a \sum_{j=0}^{a-1} (-1)^j q^{bj} \zeta_{E,q^a}(s, bx + \frac{b+1}{a}) = [2]_q^a [a]_q^b \sum_{j=0}^{b-1} (-1)^j q^{aj} \zeta_{E,q^b}(s, ax + \frac{a+1}{b}).
\]
By (1.5) and Theorem 2.1, we obtain the following theorem.

Theorem 2.2. For \(n \in \mathbb{Z} \geq 0 \) and \(a, b \in \mathbb{N} \) with \(a \equiv 1 \pmod{2} \), \(b \equiv 1 \pmod{2} \), we have

\[
[2]_q b \binom{2}{a} [a]_q \sum_{j=0}^{a-1} (-1)^j q^{bj} E_{n,q}^a (bx + \frac{bj}{a}) = [2]_q b \binom{2}{b} [b]_q \sum_{j=0}^{b-1} (-1)^j q^{aj} E_{n,q}^b (ax + \frac{aj}{b}).
\]

From (1.3), we note that

\[
E_{n,q}(x + y) = (q^{x+y} E_q + [x + y]_q)^n
= (q^{x+y} E_q + q^y [y]_q + [x]_q)^n
= (q^x (q^y E_q + [y]_q) + [x]_q)^n
= \sum_{i=0}^{n} \binom{n}{i} q^{xi} (q^y E_q + [y]_q)^i [x]_q^{n-i}
= \sum_{i=0}^{n} \binom{n}{i} q^{xi} E_{i,q}(y) [x]_q^{n-i}.
\]

Therefore, by (2.4), we obtain the following proposition.

Proposition 2.3. For \(n \geq 0 \), we have

\[
E_{n,q}(x + y) = \sum_{i=0}^{n} \binom{n}{i} q^{xi} E_{i,q}(y) [x]_q^{n-i}
= \sum_{i=0}^{n} \binom{n}{i} q^{(n-i)x} E_{n-i,q}(y) [x]_q^i.
\]

Now, we observe that
we have

For Theorem 2.4.

Therefore, by Theorem 2.2, (2.6) and (2.7), we obtain the following theorem.

\[
\sum_{j=0}^{a-1}(-1)^j q^j b_j E_n, q^a (bx + \frac{bj}{a})
\]

\[
= \sum_{j=0}^{a-1}(-1)^j q^j b_j \sum_{i=0}^{n} \binom{n}{i} q^{ia(\frac{bj}{a})} E_i, q^a (bx) \left[\frac{bj}{a} \right]_q^{n-i}
\]

\[
= \sum_{j=0}^{a-1}(-1)^j q^j b_j \sum_{i=0}^{n} \binom{n}{i} q^{(n-i)j} E_{n-j, q^a} (bx) \left[\frac{bj}{a} \right]_q^i
\]

\[
= \sum_{i=0}^{n} \binom{n}{i} \left(\frac{[b]_q}{[a]_q} \right)^i E_{n-i, q^a} (bx) \sum_{j=0}^{a-1}(-1)^j q^{j(n+1-i)} [j]^i
\]

\[
= \sum_{i=0}^{n} \binom{n}{i} \left(\frac{[b]_q}{[a]_q} \right)^i E_{n-i, q^a} (bx) S^*_n, q^a (a),
\]

where \(S^*_n, q^a (a) = \sum_{j=0}^{a-1}(-1)^j q^{(n+1-i)j} [j]^i. \)

From (2.5), we can derive

\[
[2]q^a[a]^n \sum_{j=0}^{a-1}(-1)^j q^j E_n, q^a (bx + \frac{bj}{a}) = [2]q^b \sum_{i=0}^{n} \binom{n}{i} [a]^{n-i} [b]^i E_{n-i, q^a} (bx) S^*_n, q^a (a).
\]

(2.6)

By the same method as (2.6), we get

\[
[2]q^b[b]^n \sum_{j=0}^{b-1}(-1)^j q^j E_n, q^b (ax + \frac{aj}{b}) = [2]q^a \sum_{i=0}^{n} \binom{n}{i} [b]^{n-i} [a]^i E_{n-i, q^b} (ax) S^*_n, q^b (b).
\]

(2.7)

Therefore, by Theorem 2.2, (2.6) and (2.7), we obtain the following theorem.

Theorem 2.4. For \(n \in \mathbb{Z}_{\geq 0} \) and \(a, b \in \mathbb{N} \) with \(a \equiv 1 \mod 2 \), \(b \equiv 1 \mod 2 \), we have

\[
[2]q^a \sum_{i=0}^{n} \binom{n}{i} [a]^{n-i} [b]^i E_{n-i, q^b} (bx) S^*_n, q^b (a) = [2]q^a \sum_{i=0}^{n} \binom{n}{i} [b]^{n-i} [a]^i E_{n-i, q^b} (ax) S^*_n, q^b (b),
\]

where \(S^*_n, q^a (a) = \sum_{j=0}^{a-1}(-1)^j q^{(n+1-i)j} [j]^i. \)
It is easy to show that
\[[x]_q u + q^x [y + m]_q (u + v) = [x + y + m]_q (u + v) - [x]_q v. \] (2.8)

Thus, by (2.8), we get
\[e^{[x]_q u} \sum_{m=0}^{\infty} q^m (-1)^m e^{[y + m]_q q^x (u + v)} = e^{-[x]_q v} \sum_{m=0}^{\infty} q^m (-1)^m q^{[x + y + m]_q (u + v)}. \] (2.9)

The left hand side of (2.9) multiplied by \([2]_q\) is given by
\[
\begin{align*}
[2]_q e^{[x]_q u} & \sum_{m=0}^{\infty} q^m (-1)^m e^{[y + m]_q q^x (u + v)} \\
& = e^{[x]_q u} \sum_{n=0}^{\infty} q^n x E_{n,q} (y) \frac{(u + v)^n}{n!} \\
& = \left(\sum_{n=0}^{\infty} \frac{[x]_q^n}{n!} \right) \left(\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} q^{(k+n)x} E_{k+n,q} (y) \frac{u^k v^n}{k! n!} \right) \\
& = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{m} \binom{m}{k} q^{(k+n)x} E_{k+n,q} (y) [x]_q^{n-k} \right) \frac{u^m v^n}{m! n!}.
\end{align*}
\] (2.10)

The right hand side of (2.9) multiplied by \([2]_q\) is given by
\[
\begin{align*}
[2]_q e^{-[x]_q v} & \sum_{m=0}^{\infty} (-1)^m q^m e^{[x + y + m]_q (u + v)} \\
& = e^{-[x]_q v} \sum_{n=0}^{\infty} E_{n,q} (x + y) \frac{(u + v)^n}{n!} \\
& = \left(\sum_{n=0}^{\infty} \frac{(-[x]_q)^n}{n!} \right) \left(\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} E_{m+k,q} (x + y) \frac{u^m v^k}{m! k!} \right) \\
& = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} E_{m+k,q} (x + y) (-[x]_q)^{n-k} \right) \frac{u^m v^n}{m! n!} \\
& = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} E_{m+k,q} (x + y) q^{(n-k)x} [-x]_q^{n-k} \right) \frac{u^m v^n}{m! n!}.
\end{align*}
\] (2.11)

Therefore, by (2.10) and (2.11), we get
\[
\begin{align*}
\sum_{k=0}^{m} \binom{m}{k} q^{(n+k)x} E_{m+k,q} (y) [x]_q^{n-k} &= \sum_{k=0}^{n} \binom{n}{k} q^{(n-k)x} E_{m+k,q} (x + y) [-x]_q^{n-k} \\
& = (2.12)
\end{align*}
\]
Symmetric identities of the q-Euler polynomials

References

Received: November 1, 2013