A Study on a New Fractional Integral Inequality in Quantum Calculus

Banyat Sroysang

Department of Mathematics and Statistics
Faculty of Science and Technology
Thammasat University, Pathumthani 12121 Thailand
banyat@mathstat.sci.tu.ac.th

Copyright © 2013 Banyat Sroysang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we present a new fractional integral inequality in quantum calculus.

Mathematics Subject Classification: 26D10, 26D15

Keywords: Fractional q-calculus, q-integral inequality

1 Introduction and Preliminaries

In [2, 4, 5], for \(a, b \in \mathbb{C}\) and \(q \in (0, 1)\), we denote

\[(a; q)_\infty = \prod_{k=0}^\infty (1 - aq^k) \quad \text{and} \quad (a - qb)^{(\alpha)} = a^\alpha \frac{(\frac{aq}{a}; q)_\infty}{(q^{\alpha+1}\frac{b}{a}; q)_\infty}.

The q-Jackson integral [3] from 0 to \(a\) is defined by

\[
\int_0^a f(x) d_q x = (1 - q)a \sum_{n=0}^\infty f(aq^n)q^n.
\]

The fractional q-integral [5] of the Riemann-Liouville type is defined by
\[J_q^\alpha f(t) = \frac{1}{\Gamma_q(\alpha)} \int_0^t (t - qx)^{(\alpha - 1)} f(x) dq x, \]

where \(\alpha > 0, \)

\[\Gamma_q(\alpha) = \frac{1}{1 - q} \int_0^1 \left(\frac{u}{1 - q} \right)^{\alpha - 1} e_q(du) \quad \text{and} \quad e_q(x) = \prod_{k=0}^{\infty} (1 - qx). \]

In [1], Brahim and Taf presented a fractional \(q \)-integral inequality in quantum calculus as follows.

Theorem 1.1. [1] Let \(v \) be a positive function on \([0, \infty)\), and let \(f, g \) be functions on \([0, \infty)\) such that

\[(f(x) - f(y))(g(x) - g(y)) \geq 0 \]

for all \(x, y \geq 0 \). Then

\[J_{q_1}^\alpha v(t) J_{q_2}^\beta (fg)(t) + J_{q_2}^\alpha v(t) J_{q_1}^\beta (vf)(t) \]
\[\geq J_{q_1}^\alpha f(t) J_{q_2}^\beta (vg)(t) + J_{q_2}^\alpha v(t) J_{q_1}^\beta (vf)(t) \]

where \(\alpha, \beta, t > 0 \) and \(q_1, q_2 \in (0, 1) \).

In this paper, we present a new fractional integral inequality in quantum calculus.

2 Results

Theorem 2.1. Let \(v \) be a positive function on \([0, \infty)\), and let \(f, g, h \) be functions on \([0, \infty)\) such that

\[(f(x) - f(y))(g(x) - g(y))(h(x) + h(y)) \geq 0 \]

for all \(x, y \geq 0 \). Then

\[J_{q_1}^\alpha (v fgh)(t) J_{q_2}^\beta v(t) + J_{q_1}^\alpha (v fg)(t) J_{q_2}^\beta (vh)(t) \]
\[+ J_{q_1}^\alpha (vh)(t) J_{q_2}^\beta (vfg)(t) + J_{q_1}^\alpha v(t) J_{q_2}^\beta (vfh)(t) \]
\[\geq J_{q_1}^\alpha (vfh)(t) J_{q_2}^\beta (vg)(t) + J_{q_1}^\alpha (vgh)(t) J_{q_2}^\beta (vf)(t) \]
\[+ J_{q_1}^\alpha (vg)(t) J_{q_2}^\beta (vfh)(t) + J_{q_1}^\alpha (vf)(t) J_{q_2}^\beta (vgh)(t), \]

where \(\alpha, \beta, t > 0 \) and \(q_1, q_2 \in (0, 1) \).
Proof. By the assumption, for any x, y, we have

$$f(x)g(x)h(x) + f(x)g(x)h(y) + f(y)g(y)h(x) + f(y)g(y)h(y)$$

$$\geq f(x)g(y)h(x) + f(y)g(x)h(x) + f(y)g(x)h(y) + f(x)g(y)h(y).$$

Then

$$\int_0^t (t - q_1 x)^{(\alpha - 1)} (v f g h)(x)d_{q_1} x + \int_0^t (t - q_1 x)^{(\alpha - 1)} (v f g)(x)h(y)d_{q_1} x$$

$$+ \int_0^t (t - q_1 x)^{(\alpha - 1)} (v h)(x)(f g)(y)d_{q_1} x + \int_0^t (t - q_1 x)^{(\alpha - 1)} v(x)(f g h)(y)d_{q_1} x$$

$$\geq \int_0^t (t - q_1 x)^{(\alpha - 1)} (v f h)(x)g(y)d_{q_1} x + \int_0^t (t - q_1 x)^{(\alpha - 1)} (v g h)(x)f(y)d_{q_1} x$$

$$+ \int_0^t (t - q_1 x)^{(\alpha - 1)} (v g)(x)(f h)(y)d_{q_1} x + \int_0^t (t - q_1 x)^{(\alpha - 1)} (v f)(x)(g h)(y)d_{q_1} x$$

so

$$J_{q_1}^\alpha (v f g h)(t) + h(y)J_{q_1}^\alpha (v f g)(t)$$

$$+ (f g)(y)J_{q_1}^\alpha (v h)(t) + (f g h)(y)J_{q_1}^\alpha v(t)$$

$$\geq g(y)J_{q_1}^\alpha (v f h)(t) + f(y)J_{q_1}^\alpha (v g h)(t)$$

$$+ (f h)(y)J_{q_1}^\alpha (v g)(t) + (g h)(y)J_{q_1}^\alpha (v f)(t),$$

where $\alpha, t > 0$, $y \in (0, t)$ and $q_1 \in (0, 1)$.

Then

$$\int_0^t (t - q_1 x)^{(\alpha - 1)} v(y)J_{q_1}^\alpha (v f g h)(t)d_{q_1} y$$

$$+ \int_0^t (t - q_1 x)^{(\alpha - 1)} (v h)(y)J_{q_1}^\alpha (v f g)(t)d_{q_1} y$$

$$+ \int_0^t (t - q_1 x)^{(\alpha - 1)} (v f g)(y)J_{q_1}^\alpha (v h)(t)d_{q_1} y$$

$$+ \int_0^t (t - q_1 x)^{(\alpha - 1)} (v f g h)(y)d_{q_1} x$$

$$\geq \int_0^t (t - q_1 x)^{(\alpha - 1)} (v g)(y)J_{q_1}^\alpha (v f h)(t)d_{q_1} y$$

$$+ \int_0^t (t - q_1 x)^{(\alpha - 1)} (v f)(y)J_{q_1}^\alpha (v g h)(t)d_{q_1} y$$

$$+ \int_0^t (t - q_1 x)^{(\alpha - 1)} (v f h)(y)J_{q_1}^\alpha (v g)(t)d_{q_1} y$$

$$+ \int_0^t (t - q_1 x)^{(\alpha - 1)} (v g h)(y)J_{q_1}^\alpha (v f)(t)d_{q_1} y,$$
so

$$J_{q_1}^\alpha(v f g h)(t)J_{q_2}^\beta v(t) + J_{q_1}^\alpha(v f g)(t)J_{q_2}^\beta(v h)(t) + J_{q_1}^\alpha(v h)(t)J_{q_2}^\beta(v f g)(t) + J_{q_1}^\alpha(v)(t)J_{q_2}^\beta(v f g h)(t)$$

$$\geq J_{q_1}^\alpha(v f h)(t)J_{q_2}^\beta(v g)(t) + J_{q_1}^\alpha(v g h)(t)J_{q_2}^\beta(v f)(t) + J_{q_1}^\alpha(v g)(t)J_{q_2}^\beta(v f h)(t) + J_{q_1}^\alpha(v f)(t)J_{q_2}^\beta(v g h)(t),$$

where $\alpha, \beta, t > 0$ and $q_1, q_2 \in (0, 1)$.

\[\square \]

References

Received: May 5, 2013