Solving the Generalized Kaup–Kupershmidt Equation

Alvaro H. Salas

Department of Mathematics
Universidad de Caldas, Manizales, Colombia
Universidad Nacional de Colombia, Manizales
FIZMAKO Research Group
asalash2002@yahoo.com

Abstract. In this paper we apply the Cole-Hopf transformation to find soliton solutions and the simplified Hirota’s method to find one and two soliton solutions for the generalized Kaup–Kupershmidt equation.

Mathematics Subject Classification: 35C05

Keywords: Kaup–Kupershmidt equation, KK equation, Cole-Hopf transformation, nonlinear pde, fifth order kdv, nonlinear evolution equation, simplified Hirota’s method, exp function method

1. INTRODUCTION

Hirota’s method has been one of the most successful direct techniques for constructing exact solutions of various nonlinear PDEs from soliton theory. In this paper we make use of a simplified version of this method [2] without ever using the bilinear forms. Furthermore, the simplified method can easily be implemented in any symbolic manipulation package.

This paper is organized as follows: We first find a soliton solution for the general fKdV by using a Cole-Hopf transformation [1][3]. In the next section we apply the simplified Hirota’s method [2] to find multisoliton solutions for the generalized Kaup–Kupershmidt equation.

2. SOLITON SOLUTIONS TO THE GENERAL fKdV BY THE COLE-HOPF TRANSFORMATION

The general fifth order KdV equation reads

\[u_t + \omega u_{xxxx} + \alpha uu_{xxx} + \beta u_x uu_{xx} + \gamma u^2 u_x = 0, \]

(2.1)
where \(\alpha, \beta, \gamma \) and \(\omega \) are arbitrary real parameters. To obtain a soliton solution, we apply the generalized Cole-Hopf transformation

\[
(2.2) \quad u = A \frac{\partial^2}{\partial x \partial t} \ln f(x, t) + B,
\]

where \(A \) and \(B \) are some constants and

\[
f(x, t) = 1 + \exp(\theta), \quad \theta = kx - ct + \delta
\]

Upon substitution of (2.2) into (2.1), we obtain the equation

\[
(A\omega_k^7 + AB\alpha k^5 + AB^2\gamma k^3 - Ack^2) e^\theta + (-57A\omega_k^7 + A^2\alpha k^7 + A^2\beta k^7 - 9AB\alpha k^5 + 2A^2B\gamma k^5 + 3AB^2\gamma k^3 - 3Ack^2) e^{2\theta} + (302A\omega_k^7 - 11A^2\alpha k^7 - 5A^2\beta k^7 - A^3\gamma k^7 - 10AB\alpha k^5 + 2A^2B\gamma k^5 + 2AB^2\gamma k^3 - 2Ack^2) e^{3\theta} + (-302A\omega_k^7 + 11A^2\alpha k^7 + 5A^2\beta k^7 - A^3\gamma k^7 - 10AB\alpha k^5 - 2A^2B\gamma k^5 - 2AB^2\gamma k^3 + 2Ack^2) e^{4\theta} + (57A\omega_k^7 - A^2\alpha k^7 - A^2\beta k^7 + 9AB\alpha k^5 - 2A^2B\gamma k^5 - 3AB^2\gamma k^3 + 3Ack^2) e^{5\theta} + (-A\omega_k^7 - AB\alpha k^5 - AB^2\gamma k^3 + Ack^2) e^{6\theta} = 0.
\]

Equating the coefficients of \(e^\theta, e^{2\theta}, ..., e^{6\theta} \) to zero, we obtain an algebraic system. Solving this system yields:

- **First solution**:

\[
A = \frac{6\alpha + 3\beta - 3 \sqrt{(2\alpha + \beta)^2 - 40\omega\gamma}}{\gamma}, \quad B = \frac{k^2 (-2\alpha - \beta + \sqrt{(2\alpha + \beta)^2 - 40\omega\gamma})}{4\gamma},
\]

\[
c = -\frac{k^5 \left(12\omega \gamma + \beta (-2\alpha - \beta + \sqrt{(2\alpha + \beta)^2 - 40\omega\gamma})\right)}{8\gamma}.
\]

\[
(2.3) \quad u(x, t) = \frac{k^2 (R - 2\alpha - \beta) \left(\cosh \left(kx + \frac{k^5}{8\gamma} \left((R - 2\alpha - \beta)\beta + 12\omega\gamma\right) t + \delta \right) - 5 \right)}{4\gamma \left(\cosh \left(kx + \frac{k^5}{8\gamma} \left((R - 2\alpha - \beta)\beta + 12\omega\gamma\right) t + \delta \right) + 1 \right)},
\]

where \(R = \sqrt{(2\alpha + \beta)^2 - 40\omega\gamma} \).

- **Second solution**:

\[
A = \frac{3(2\alpha + \beta + \sqrt{(2\alpha + \beta)^2 - 40\omega\gamma})}{\gamma}, \quad B = -\frac{k^2 \left(2\alpha + \beta + \sqrt{(2\alpha + \beta)^2 - 40\omega\gamma} \right)}{4\gamma},
\]
Solving the generalized Kaup–Kupershmidt equation

\[
c = \frac{k^5 \left(\beta \left(2\alpha + \beta + \sqrt{(2\alpha + \beta)^2 - 40\gamma \omega} \right) - 12\gamma \omega \right)}{8\gamma}.
\]

(2.4)

\[
u(x, t) = -\frac{k^2(R + 2\alpha + \beta) \left(\cosh \left(kx - \frac{k^5}{8\gamma}(\beta(R + 2\alpha + \beta) - 12\omega \gamma)t + \delta \right) - 5 \right)}{4\gamma \left(\cosh \left(kx - \frac{k^5}{8\gamma}(\beta(R + 2\alpha + \beta) - 12\omega \gamma)t + \delta \right) + 1 \right)},
\]

where \(R = \sqrt{(2\alpha + \beta)^2 - 40\omega \gamma}. \)

3. The generalized Kaup–Kupershmidt equation

This equation reads

\[
u_t + 10abu_{xxx} + 25abu_x u_{xx} + bu^2u_x + 20a^2bu_{xxxxx} = 0,
\]

where \(a \neq 0 \) and \(b \neq 0. \)

The well-known Kaup–Kupershmidt equation \([5][2]\) (KK equation)

\[
u_t + 10au_{xxx} + 25u_x u_{xx} + 20u^2 u_x + u_{xxxxx} = 0,
\]

is obtained from (3.1) for the values \(a = 1/20 \) and \(b = 20. \)

From Eqs. (2.3) and (2.4) we obtain the following solutions of (3.1):

\[
u_1(x, t) = -\frac{5}{2} a k^2 \left(1 - \frac{6}{\cosh \left(kx - \frac{5}{4}a^2bk^5t + \delta \right) + 1} \right).
\]

(3.3)

\[
u_2(x, t) = 20a k^2 \left(1 - \frac{6}{\cosh \left(kx - 220a^2bk^5t + \delta \right) + 1} \right).
\]

(3.4)

Solution (3.3) has the form (2.2) and it corresponds to values \(A = 30a, B = -5ak^2/2 \) and \(c = -\frac{5}{4}a^2bk^5. \) From (3.3) and (3.4) we obtain periodic solutions if we change \(k \) by \(\sqrt{-1}k \) and \(\delta \) by \(\sqrt{-1}\delta. \) These solutions are:

\[
u_3(x, t) = \frac{5}{2} a k^2 \left(1 - \frac{6}{\cos \left(kx - \frac{5}{4}a^2bk^5t + \delta \right) + 1} \right).
\]

(3.5)

\[
u_4(x, t) = -20a k^2 \left(1 - \frac{6}{\cos \left(kx - 220a^2bk^5t + \delta \right) + 1} \right).
\]

(3.6)

3.1. Simplified Hirota’s method. We will apply this method to find multisolitons solutions for Eq. (3.1). Using the Cole-Hopf transformation

\[
u = 30a \frac{\partial^2}{\partial x \partial x} \ln f,
\]

we get a fourth degree equation in \(f = f(x, t) \) and its derivatives,

\[
P^4(20a^2bfxxxxx + fxx) + \]

\[
P^3(50a^2bfxxx fxxx - 120a^2bfxx fxxxx - 140a^2bfxfxxxxx - 2fx fxx - ft fxx) + \]

where
\[f^2(-200a^2bf_{xx}f_{xxx}^2 - 150a^2b f_{xx}^2 f_{xxxx} + 450a^2bf_{xx}f_{xxxx} + 540a^2bf_{xx}^2 f_{xxxxx} + 2f_{xx}^2) + \\
 f^1 \cdot 150a^2b(3f_{xx}f_{xxx}^2 - 8f_{xx}f_{xxxx}) + 300a^2bf_x^3(4f_{xx}f_{xxx} - 3f_{xx}^2) = 0. \]

Obviously, this last equation can be written as

\[f^4 \mathcal{L}(f) + f^3 \mathcal{N}_1(f,f) + f^2 \mathcal{N}_2(f, f, f) + f \mathcal{N}_3(f, f, f, f) + \mathcal{N}_4(f, f, f, f, f) = 0, \]

where the linear operator \(\mathcal{L} \) and the nonlinear operators \(\mathcal{N}_1, \mathcal{N}_2, \mathcal{N}_3, \mathcal{N}_4 \) are defined as

\[\mathcal{L}(f) = 20a^2bf_{xxxxxxx} + f_{xxx}, \]
\[\mathcal{N}_1(f,g) = 50a^2bf_{xxx}g_{xxxx} - 120a^2bf_{xx}g_{xxxx} - 140a^2bf_{x}g_{xxxxx} - 2f_{x}g_{xx} - f_{t}g_{xx}, \]
\[\mathcal{N}_2(f, g, h) = -200a^2bf_{xx}g_{xxx}h_{xxx} - 150a^2bf_{xx}g_{xx}h_{xxx} + 450a^2bf_{xx}g_{xxx}h_{xxxx} + 540a^2bf_{xx}g_{xx}h_{xxxx} + 2f_{xx}g_{xx}, \]
\[\mathcal{N}_3(f, g, h, \phi) = 150a^2b(3f_{xx}g_{xx}h_{xxx} - 8f_{xx}g_{xx}h_{xxxx}), \]
\[\mathcal{N}_4(f, g, h, \phi, \varphi) = 300a^2b(4f_{xx}g_{xx}h_{xxx} - 3f_{xx}g_{xx}h_{xxxx}). \]

for auxiliary functions \(f, g, h, \phi \) and \(\varphi \). We seek a solution of (3.8) in the form

\[f(x, t) = 1 + \sum_{n=1}^{\infty} \epsilon^n f^{(n)}(x, t). \]

We substitute (3.13) into (3.8) and equate the coefficients of different powers of \(\epsilon \) to zero. The following perturbation scheme follows:
\(O(\epsilon^1): \mathcal{L}(f^{(1)}) = 0.\)

\(O(\epsilon^2): \mathcal{L}(f^{(2)}) = -N_1(f^{(1)}, f^{(1)})\)

\(O(\epsilon^3): \mathcal{L}(f^{(3)}) = f^{(1)}N_1(f^{(1)}, f^{(1)}) - N_1(f^{(1)}, f^{(2)}) - N_1(f^{(2)}, f^{(1)}) - \)

\(N_2(f^{(1)}, f^{(1)}, f^{(1)})\)

\(O(\epsilon^4): \mathcal{L}(f^{(4)}) = -N_1(f^{(1)}, f^{(1)})(f^{(1)})^2 + N_1(f^{(1)}, f^{(2)})f^{(1)} + N_1(f^{(2)}, f^{(1)})f^{(1)} + \)

\(2N_2(f^{(1)}, f^{(1)}, f^{(1)})f^{(1)} + f^{(2)}N_1(f^{(1)}, f^{(1)}) - N_1(f^{(1)}, f^{(3)}) - N_1(f^{(2)}, f^{(2)}) - \)

\(N_1(f^{(3)}, f^{(1)}) - N_2(f^{(1)}, f^{(1)}, f^{(2)}) - N_2(f^{(1)}, f^{(2)}, f^{(1)}) - N_2(f^{(2)}, f^{(1)}, f^{(1)}) - \)

\(N_3(f^{(1)}, f^{(1)}, f^{(1)}).

\(O(\epsilon^5): \mathcal{L}(f^{(5)}) = -N_1(f^{(2)}, f^{(1)})(f^{(1)})^2 - 3N_2(f^{(1)}, f^{(1)}, f^{(1)})(f^{(1)})^2 + \)

\(N_1(f^{(1)}, f^{(3)})f^{(1)} + N_1(f^{(2)}, f^{(2)})f^{(1)} + N_1(f^{(3)}, f^{(1)})f^{(1)} + \)

\(2N_2(f^{(1)}, f^{(1)}, f^{(2)})f^{(1)} + 2N_2(f^{(1)}, f^{(2)}, f^{(1)})f^{(1)} + 2N_2(f^{(2)}, f^{(1)}, f^{(1)})f^{(1)} + \)

\(3N_3(f^{(1)}, f^{(1)}, f^{(1)})f^{(1)} + (f^{(1)})^3 - 2f^{(2)}f^{(1)} + f^{(3)}N_1(f^{(1)}, f^{(1)}) + \)

\((f^{(2)} - (f^{(1)})^2)N_1(f^{(1)}, f^{(2)}) - N_1(f^{(1)}, f^{(4)}) + f^{(2)}N_1(f^{(2)}, f^{(1)}) - \)

\(N_1(f^{(2)}, f^{(3)}) - N_1(f^{(3)}, f^{(2)}) - N_1(f^{(4)}, f^{(1)}) + 2f^{(2)}N_2(f^{(1)}, f^{(1)}, f^{(1)}) - \)

\(N_2(f^{(1)}, f^{(1)}, f^{(3)}) - N_2(f^{(1)}, f^{(2)}, f^{(2)}) - N_2(f^{(1)}, f^{(3)}, f^{(1)}) - \)

\(N_2(f^{(2)}, f^{(1)}, f^{(2)}) - N_2(f^{(2)}, f^{(2)}, f^{(1)}) - N_2(f^{(3)}, f^{(1)}, f^{(1)}) - \)

\(N_3(f^{(1)}, f^{(1)}, f^{(2)}) - N_3(f^{(1)}, f^{(1)}, f^{(2)}) - N_3(f^{(2)}, f^{(2)}, f^{(1)}) - \)

\(N_4(f^{(1)}, f^{(1)}, f^{(1)}).

Noticeably, the number of terms in the right hand side (RHS) of the equations grows rapidly as the order in \(\epsilon\) increases.

3.1.1. The One-Soliton solution. To find the one-soliton solution, take

\((3.19)\quad f^{(1)} = \exp(\theta), \quad \text{with} \quad \theta = kx - ct + \delta.\)

Equation (3.14) gives the dispersion law \(c = 20a^2bk^5\). To solve (3.15), we first compute its RHS,

\((3.20)\quad -N_1(f^{(1)}, f^{(1)}) = 150a^2k^7 \exp(2\theta).\)
Thus, \(f^{(2)} \) will be of the form \(f^{(2)} = \lambda \exp(2\theta) \). Calculating the left hand side (LHS) of (3.15),

\[
\mathcal{L}(f^{(2)}) = 2400a^2bk^7e^{-40a^2bk^5+2xk+2\delta} = 2400\lambda a^2bk^7 \exp(2\theta).
\]

and equating it with (3.20) we get \(\lambda = 1/16 \) so

\[
f^{(2)} = \frac{1}{16} \exp(2\theta).
\]

It is straightforward to check that \(f^{(n)} = 0 \) for \(n \geq 3 \). Therefore, using (3.7) and (3.13) with \(\epsilon = 1 \), the one-soliton solution of (3.1) generated by

\[
f = 1 + \exp(\theta) + \frac{1}{16} \exp(2\theta) = 1 + \exp(kx - 20a^2bk^5t + \delta) + \frac{1}{16} \exp(2(kx - 20a^2bk^5t + \delta))
\]
is

\[
u(x, t) = \frac{480ak^2(4 + e^{kx - 20a^2bk^5t + \delta} + 16e^{-(kx - 20a^2bk^5t + \delta)})}{(16 + e^{kx - 20a^2bk^5t + \delta} + 16e^{-(kx - 20a^2bk^5t + \delta)})^2}
\]

3.1.2. The Two-Soliton Solution. For the two-soliton solution, we start with

\[
f^{(1)} = \exp(\theta_1) + \exp(\theta_2),
\]

where \(\theta_i = k_ix - c_it + \delta_i, \; i = 1, 2 \). From (3.14) we get \(c_i = 20a^2bk_i^5, \; i = 1, 2 \).

To find \(f^{(2)} \), the RHS of (3.15) has to be calculated. We obtain

\[
-N_1(f^{(1)}, f^{(1)}) = 150a^2bk_1^7e^{2\theta_1} + 150a^2bk_2^7e^{2\theta_2} + 50ae^{\theta_1 + \theta_2}k_1k_2(k_1 + k_2)(2k_1^4 - k_2^2k_1^2 + 2k_1^2) \exp(\theta_1 + \theta_2)
\]

Obviously, \(f^{(2)} \) must be of the form

\[
f^{(2)} = p \exp(2\theta_1) + q \exp(2\theta_2) + r \exp(\theta_1 + \theta_2)
\]

In contrast to what happened for the KdV, the Lax, and SK equations, the terms in \(\exp(2\theta_i) \) no longer drop out. We now substitute (3.26) into (3.15). Computation of the LHS yields

\[
\mathcal{L}(f^{(2)}) = 2400a^2bk_1^7pe^{2\theta_1} + 2400a^2bk_2^7qe^{2\theta_2} + 100a^2bk_1k_2r(k_1 + k_2)^3(k_1^2 + k_2k_1 + k_2^2) \exp(\theta_1 + \theta_2)
\]

Equating (3.25) and (3.27) gives \(p = q = \frac{1}{16} \) and

\[
r = \frac{2k_1^4 - k_2^2k_1^2 + 2k_1^2}{2(k_1 + k_2)^2(k_1^2 + k_2k_1 + k_2^2)}
\]

Therefore,

\[
f^{(2)} = \frac{1}{16} \exp(\theta_1) + \frac{1}{16} \exp(\theta_2) + \frac{2k_1^4 - k_2^2k_1^2 + 2k_1^2}{2(k_1 + k_2)^2(k_1^2 + k_2k_1 + k_2^2)} \exp(\theta_1 + \theta_2)
\]
Proceeding in a similar way with (3.16) we find

\[f^{(3)} = s \left(\exp(2\theta_1 + \theta_2) + \exp(\theta_1 + 2\theta_2) \right), \]

(3.30)

\[s = \frac{(k_1 - k_2)^2 (k_1^2 - k_1 k_2 + k_2^2)}{16(k_1 + k_2)(k_1^2 + k_1 k_2 + k_2^2)}. \]

(3.31)

To find \(f^{(4)} \), equation (3.17) has to be solved, which leads to

\[f^{(4)} = s^2 \exp(2\theta_1 + 2\theta_2) = \frac{(k_1 - k_2)^4 (k_1^2 - k_1 k_2 + k_2^2)^2}{256(k_1 + k_2)^2 (k_1^2 + k_1 k_2 + k_2^2)^2} \exp(2\theta_1 + 2\theta_2). \]

(3.32)

After verifying that all \(f^{(n)} \) will be zero, for \(n \geq 5 \), the form of \(f \) for \(\epsilon = 1 \) will be

\[f = \exp(\theta_1) + \exp(\theta_2) + \frac{1}{16} \exp(2\theta_1) + \frac{1}{16} \exp(2\theta_2) + r \exp(\theta_1 + \theta_2) + s \left(\exp(2\theta_1 + \theta_2) + \exp(\theta_1 + 2\theta_2) \right) + s^2 \exp(2\theta_1 + 2\theta_2), \]

(3.33)

where \(r \) and \(s \) are given by (3.28) and (3.31), respectively. The two-soliton solution of Eq. (3.1) could be obtained by substituting (3.33) into (3.7).

In a similar fashion, we may find three and four soliton solutions. For additional details, see [2].

4. Conclusions

We have obtained many solutions of the generalized KK equation by using three distinct methods. The Exp-function method is a promising method because it can establish a variety of solutions of distinct physical structures. This method allows us to obtain many new solutions for evolution equations.

REFERENCES

Received: March, 2012