The Problem of Sensor Placement

Anna Gorbenko
Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
gorbenko.ann@gmail.com

Maxim Mornev
Leiden University
Verlengde Wassenaarseweg 13 F K1, Oegstgeest, 2342 BG, Netherlands
max.mornev@gmail.com

Vladimir Popov
Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
Vladimir.Popov@usu.ru

Andrey Sheka
Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
Andrey.Sheka@gmail.com

Abstract

In this paper we describe an approach to solve the problem of sensor placement. Our approach is based on constructing logical models for considered problem.

PACS: 42.30.Tz

Keywords: sensor placement, logical models, MAXSAT
Placement problems for sensors received a lot of attention recently (see e.g. [1]). For instance, sensor placement is extensively used for improved robotic navigation. Note that for many formalizations determining the set of sensors to deploy is a difficult problem. Therefore, it is natural to consider intelligent algorithms to solve this problem.

In this paper we consider a formalization for the problem of sensor placement. For our formalization we describe an approach to create a solver for the problem of sensor placement that based on constructing a logical model for the problem. In particular, we give explicit polynomial reductions from the decision version of the problem to MAXSAT.

Let \(\mathbb{Z} \) be the set of integers. Let \(R \subseteq \mathbb{Z}^2 \) be a discretized workspace. Let \(N \subseteq R \) be a set of target locations. Respectively, let \(S \subseteq R \) be a set of candidate sensor locations. Assume that a point \(y \in R \) is visible from another point \(x \) if \(y \in F(x) \) where \(F : S \to 2^R \).

The problem of sensor placement (SP):

Instance: Given a discretized workspace \(R \), visibility function \(F \), a set \(N \) of target locations, a set \(S \) of candidate sensor locations, and a positive integer \(k \).

Question: Is there a set \(T \subseteq S \) such that \(\bigcup_{x \in T} F(x) = N \) and \(|T| \leq k \)?

Let \(S = \{a_1, a_2, \ldots, a_m\} \), \(N = \{b_1, b_2, \ldots, b_n\} \).

Without loss of generality we can assume that for any \(i \) there is \(j \) such that \(b_i \in F(a_j) \). Let

\[
\alpha_{i,j} = (\lor_{l \in \{p | b_i \in F(a_p)\}} x_l) \lor s_j,
\]

\[
\beta_{i,j} = (\lor_{l \in \{p | b_i \in F(a_p)\}} x_l) \lor \neg s_j
\]

where \(1 \leq i \leq n, 1 \leq j \leq m + 1 \). Let

\[
\varphi = (\land_{1 \leq i \leq n, 1 \leq j \leq m+1} (\alpha_{i,j} \land \beta_{i,j})) \land (\land_{1 \leq i \leq m} \neg x_i).
\]

Theorem. Let \(\{s_i^0, x_j^0 | 1 \leq i \leq m + 1, 1 \leq j \leq m\} \) be an assignment to the variables of \(\varphi \) such that a maximum number of clauses of \(\varphi \) is satisfied. Let \(T = \{a_j | a_j \in S, x_j^0 = 1\} \). Then

\[
|T| = \min_{P \subseteq S, \bigcup_{x \in P} F(x) = N} |P|.
\]

Proof. It is easy to see that we can suppose that \(x_i = 1 \) if and only if a sensor placed in \(i \)th candidate sensor location.

Note that the total number of clauses of \(\varphi \) is \(2n(m + 1) + m \). Since for any \(i \) there is \(j \) such that \(b_i \in F(a_j) \), it is easy to see that \(|\{p | b_i \in F(a_p)\}| \geq 1 \).
for all $\alpha_{i,j}$ and $\beta_{i,j}$. Suppose that $x_l = 1$ for all l. It is clear that, in this case, at least $2n(m+1)$ clauses of φ is satisfied.

Note that if $x_i = 0$ for some i and for all $l \in \{p \mid b_i \in F(a_p)\}$, then either $\alpha_{i,j} = 0$ or $\beta_{i,j} = 0$ for all j. Therefore, in this case, no more than $2n(m+1) - 1$ clauses of φ is satisfied. So, if $\{s^0_i, x^0_j \mid 1 \leq i \leq m+1, 1 \leq j \leq m\}$ is an assignment to the variables of φ such that a maximum number of clauses of φ is satisfied, then $\alpha_{i,j} = 1$ and $\beta_{i,j} = 1$ for all i and j. Thus, for any assignment to the variables of φ such that a maximum number of clauses of φ is satisfied, we have $\bigcup_{x \in T} F(x) = \mathbb{N}$.

In view of $\bigwedge_{1 \leq t \leq m} x_t$, it is easy to check that if a maximum number of clauses of φ is satisfied, then a minimum number of sensors is placed. \hfill \Box

Clearly, φ is a CNF. It is easy to check that φ give us an explicit reduction from SP to MAXSAT.

In papers [2, 3, 4, 5, 6, 7] the authors considered some algorithms to solve logical models. Our computational experiments have shown that these algorithms can be used to solve the logical model for SP.

References

Received: May, 2012