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Abstract 
 

We analyze a type of self-gravitating object, described by a soliton to the coupled 
system of the Einstein equation and a matter field equation. The existence of such 
objects could have important connotations in astrophysics, specially by high 
density stars. 
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1 Introduction 
 
In astronomy and cosmology, dark matter is hypothetical matter that is 
undetectable by its emitted radiation, but whose presence can be inferred from 
gravitational effects on visible matter. According to present observations of 
structures larger than galaxies, as well as Big Bang cosmology, dark matter and 
dark energy could account for the vast majority of the mass in the observable 
universe.  
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Dark matter is postulated to partially account for evidence of “missing mass" in 
the universe, including the rotational speeds of galaxies, orbital velocities of 
galaxies in clusters, gravitational clusters, gravitational lensing of background 
objects by galaxy clusters, and the temperature distribution of hot gas in galaxies 
and clusters of galaxies.  
Dark matter is believed to play a central role in structure formation and galaxy, 
and has measurable effects on the anisotropy of the cosmic microwave 
background. All these lines of evidence suggest that galaxies, clusters of galaxies, 
and the universe as a whole contain far more matter than that which interacts with 
electromagnetic radiation: the remainder is frequently called the "dark matter 
component," even though there is a small amount of baryonic dark matter. The 
largest part of dark matter which does not interact with electromagnetic radiation 
is not only "dark" but also by definition utterly transparent; in recognition of this, 
it has been referred to as transparent matter by some astronomers.  
As important as dark matter is believed to be in the universe, direct evidence of its 
existence and a concrete understanding of its nature have remained elusive. 
Though the theory of dark matter remains the most widely accepted theory to 
explain the anomalies in observed galactic rotation, some alternative theories such 
as modified newtonian dynamics and tensor-vector-scalar gravity have been 
proposed.  
 
Modern cosmology is in a state of crisis, it started with dark matter and erupted 
with an indication that most of the universe is made up of dark energy. But what 
is the dark matter, and what does it mean for the universe? No one at this time can 
definitely state what dark matter is other than to assure us that it really does exist 
and that most of our galaxy is made of it. At present there are two prevailing 
thoughts as to what dark matter could be, the most popular thought being that it 
represents a kind of exotic state of normal matter [1, 3, 7, 12] (or perhaps more 
accurately that “normal matter” is an exotic representation of the more abundant 
form of matter in the universe) that we have yet to identify. The least popular 
thought to what dark matter is –is simply that it does not exist and that it 
originates due to over reliance on the assumption that Newtonian gravity applies 
everywhere at the same magnitude that it does within the Solar System. The 
overall problem with dark matter is that it is questions one of the most sacred 
paradigms of physics, that the laws of physics on Earth are no different than those 
on the Moon, the Sun, and the whole of the universe. Yet the existence of dark 
matter seems to challenge the idea that the laws of physics are the same 
everywhere, as either some unknown physics can generate dark matter non 
universally or that law of gravitation does not apply universally.  
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2 The model 
 
The classical field theories [4-10] admit nontopological soliton solutions, 
solutions which have finite and nonzero masses, confined to finite regions of 
space for all time, free of singularity, and which are nontopological in nature [6].  
The interest in these solutions systems to issue from the dark-matter problem in 
cosmology. It is by now well accepted, that visible, baryonic matter can account 
for only a small fraction of the total mass of the Universe, and there are strong 
indications that the dark matter is nonbaryonic in nature. Various kinds of 
nontopological soliton configurations of nonbaryonic matter have been proposed 
and studied for their possible astrophysical roles. 
In this work we investigate the existence of soliton solutions for classical field 
theories. As an example, I show that a massive real scalar field satisfying the 
Klein-Gordon equation can form a self-gravitating solitonic object when coupled 
to Einstein gravity. I call such objects oscillating soliton stars, emphasizing their 
possible astrophysical role.  

 
 

3 The metric and equations 
 

As a simple example of an oscillating soliton star, I consider a massive, real 
Klein-Gordon scalar field, coupled only to gravity. I expect, in the absence of 
angular momentum, that the soliton solution to be spherically symmetric. The 
metric can then be written in the form,  

 
ds2  = - N2 (t,r) dt2 + g2 (t,r) dr2 + r2 dΩ2                                

 
The coupled Einstein-Klein-Gordon equations lead to  

 
(N2)´  =   N2   [ g2  -  1]   +    4πGr (N2 φ´2  -  N2 g2 φ2  +  g2 φ2 ) 

                    r  
(g2)´  =   -  g2   [ g2  -  1]   +  4πGrg2  [ g2 φ´2  + φ´2  +  g2 m2 φ2 ] 

                    r   N2 
                                     

φ¨..  =   - (N2 )´ φ  +  (N2 )´ φ´  +  N2  [ φ´´ -  (g2)´ φ´   -   (g2)´ φ´]  +  2   N2  φ´                     
          2N2       2g2            g2          2g2            2N2        r   g2 
       

- m2 N2 φ 
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where an overdot denotes ∂/∂t and a prime denotes ∂/∂r. 
It is tempting to search for time-independent solutions. However, the pseudovirial 
theorem of Rosen [8] implies that no such solution is possible in the Newtonian 
limit, and in the strong-field case. All known static solutions in the previous 
system of equations has no singularities [2]. The structure of equations suggests 
periodic expansions of the form 

 
N2 (t,r)  =  1  +  Σ∞j=0  N2j (r ) cos (2jω0t ) 
g2 (t,r)  =  1  +  Σ∞j=0  g2j (r ) cos (2jω0t ) 

              φ (t,r)  =   Σ∞j=1  φ2j-1 (r ) cos [(2j-1)ω0t ] 
I put these expansions into equations, set the coefficients of each Fourier 
component to zero, and obtain a system of coupled nonlinear ordinary first-order 
differential equations for N2j (r) and g2j (r), and second-order differential equations 
for φ2j-1 (r). The boundary conditions are given by the following requirements: 
asymptotic flatness requires N2j (∞) = g2j (∞) = φ2j+1 (∞) = 0 , at  r = 0, the 
absence of a conical singularity implies g2j (r = 0) = 0. The requirement that the 
metric coefficients be finite at r = 0  implies that  (d / dr)φ2j-1 (r = 0) = 0.  
This is an eigenvalue problem; is there a nontrivial solution to the set of ordinary  
differential equations satisfying the above boundary conditions for some 
particular values of  N2j (0), φ2j-1 (0), and ω0 have an impossible analytic solution.  
 
 
4 Numerical results 
 
The system of equations it is truncate after a certain maximum j=jmax , numerically 
solve the eigenvalue problem, and study the convergence of the series as a 
function of j = jmax . We find that for each value of φ1 (r = 0) there exists a set of 
values for the other initial data such that a solution satisfying the appropiate 
boundary conditions at r = ∞ exists. A typical radial metric function g2(t=0, r) – 1, 
for the case of  φ1 (0) = 0.20, is plotted as a solid line in Figure 1, the individual 
components g2j (r) are plotted as dashed lines for the first few values of j. The 
series expansion converge. It can see that the scalar field energy densities 
(measured by an observer at fixed radius r ) at ω0t = 0, π/2, and π.   
In Figure 2 the mass M of the star is plotted against the radius containing 97 % of 
its mass. This mass curve is similar it those of white dwarfs and neutron stars, 
with maximum mass given by Mc ≈ 0.6 M2

Planck/m., and the total mass of the 
oscillating soliton star (in units of M2

Planck /m) is calculated as a function of its 
radius R (in units of 1/m). 
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It is clear that this oscillating soliton solution cannot be obtained as a 
post-Newtonian expansion, even for those weak-field configurations having small 
total mass M and large radii. In the Newtonian expansion time derivatives of the 
metric functions are treated as one order higher in smallness than spatial 
derivatives. This is not true for oscillating soliton stars, for which temporal 
derivatives are of zeroth order (∂/∂t ≈ ω0 ≈ m). The oscillation is an intrinsic 
character of the solution. 
Given the explicit construction of the first few terms in the expansion, one would 
like to investigate the importance of the rest of the terms which were neglected. 
Second, it is important to know whether the solution is stable with respect to 
perturbations. Such an initial configuration can be regarded as an exact oscillating 
soliton solution with a small perturbation.  
 
 
5 Conclusions 
 
Preliminary studies shows that this can be formed under very general initial 
conditions, and we have been obtained similar results that others authors [11]. 
Therefore, even if the object is just quasi-periodic, the existence of this type of 
self-graviting object could have significant astrophysical implications. 
The existence of such objects give rise to the possibility that the dark matter is 
made up of oscillating soliton stars, and the condensation of, e.g., axions or 
pseudo Higgs bosons into very compact, high-density oscillating soliton stars may 
significantly enhance their annihilation rates, which could in turn rule them out as 
dark-matter candidates. Whether one of these interesting possibilities turns out to 
be the case hinges on the formation process of the oscillating soliton stars.  
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Figure 1: A solution to the truncated eigenvalue equations (jmas = 2) of the metric 
quantity grr is shown (left vertical axis) for a solution with a mass M = 0.56 
M2

Planck/m. The solid line shows grr – 1, while the dashed lines show the first three 
terms of its cosine series expansion. This rapid convergence of the series is typical 
of all the configurations calculated. 
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Figure 2: The total mass M of the oscillating soliton star (in units of M2

Planck/m) 
plotted as a function of its radius R (in units of 1/m). The squares represent actual 
configuration resulting from solutions to the eigenvalue equations. Configurations 
to the right of the maximum mass Mcritic ≈ 0.7 are stable, while those to the left are 
unstable. 
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