Weak and Strong Convergence Theorems for k-Strictly Pseudo-Contractive in Hilbert Space

Qinwei Fan, Minggang Yan, Yanrong Yu and Rudong Chen

1 Department of Mathematics, Tianjin Polytechnic University
Tianjin, P.R. China 300160
tjcrd@yahoo.com.cn (R. Chen)

2 Adult Education College of Shangqiu Vocational and Technical College
Shangqiu, Henan, P.R. China, 476000

Abstract. Let K be a nonempty closed convex subset of a real Hilbert space H, and assume that $T_i : K \rightarrow H, i = 1, 2, \ldots, N$ be a finite family of k_i-strictly pseudo-contractive mappings for some $0 \leq k_i \leq 1$ such that $\bigcap_{i=1}^{N} F(T_i) = \{ x \in K : x = T_ix, i = 1, 2, \ldots, N \} \neq \emptyset$. For the following iterative algorithm in K, for $x_1, x'_1 \in K$ and $u \in K$,

\[
\begin{align*}
\{y_n &= P_K[kx_n + (1 - k)\sum_{i=1}^{N} \lambda_i T_ix_n] \\
x_{n+1} &= \beta_n x_n + (1 - \beta_n)y_n
\end{align*}
\]

and

\[
\begin{align*}
\{y'_n &= P_K[\alpha'_n x'_n + (1 - \alpha'_n)\sum_{i=1}^{N} \lambda_i T_ix'_n] \\
x'_{n+1} &= \beta'_n u + (1 - \beta'_n)y'_n
\end{align*}
\]

P_K is the metric projection of H onto K, $\{\alpha'_n\}$ and $\{\beta'_n\}$ are sequences in $(0,1)$ satisfying appropriate conditions, we proved that $\{x_n\}$ and $\{x'_n\}$ respectively converges strongly to a common fixed point of $\{T_i\}_{i=1}^{N}$. Our results improve and extend the results announced by Genaro L.A. and H.K.Xu [Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonl.Anal.67(2007) 2258-2271], T.H.Kim and H.K.Xu [Strong convergence of modified Mann iterations, Nonlinear Anal.61(2005)51-60] and G.Marino and H.K.Xu [Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J.Math.Anal.Appl.329(2007)336-346].
Keywords: \(k\)-strict pseudo-contraction; nonexpansive mapping; fixed point; metric projection; weak and strong convergence

1. Introduction

Let \(K\) be a nonempty closed convex subset of a Hilbert space \(H\). We use \(F(T)\) to denote the fixed point set of \(T\) and \(P_K\) to denote the metric projection of \(H\) onto \(K\). Recall that a mapping \(T: K \to H\) is said to be a \(k\)-strictly pseudo-contractive if there exists a constant \(k \in [0, 1)\) such that

\[
\|Tx - Ty\|^2 \leq \|x - y\|^2 + k\|(I - T)x - (I - T)y\|^2, \forall x, y \in K
\]

(1.1)

Note that the class of \(k\)-strictly pseudo-contractions includes strictly the class of nonexpansive mappings which are mappings \(T\) on \(K\) such that

\[
\|Tx - Ty\| \leq \|x - y\|, \forall x, y \in K.
\]

When \(k = 0\), \(T\) is said to be nonexpansive, and it is said to be pseudo-contractive if \(k = 1\). \(T\) is said to be strongly pseudo-contractive if there exist a positive constant \(\lambda \in (0, 1)\) such that \(T - \lambda I\) is pseudo-contractive. Clearly, the class of \(k\) strict pseudo-contraction falls into the one between classes of nonexpansive mappings and pseudo-contractions. We remark also that the class of strongly pseudo-contractive mappings is independent of the class of \(k\) strict pseudo-contraction (see [2, 3, 5]).

It is very clear that, in a real Hilbert space \(H\), (1.1) is equivalent to

\[
\langle Tx - Ty, x - y \rangle \leq \|x - y\|^2 - \frac{1 - k}{2}\|(x - Tx) - (y - Ty)\|^2, \forall x, y \in K.
\]

(1.2)

\(T\) is pseudo-contractive if and only if

\[
\langle Tx - Ty, x - y \rangle \leq \|x - y\|^2
\]

(1.3)

\(T\) is strongly pseudo-contractive if and only if there exists a positive constant \(\lambda \in (0, 1)\) such that

\[
\langle Tx - Ty, x - y \rangle \leq (1 - \lambda)\|x - y\|^2, \forall x, y \in K.
\]

(1.4)

Recall that the normal Mann’s iterative algorithm was introduced by Mann (see [1]) in 1953. Since then, construction of fixed points for nonexpansive mapping have been extensively investigated (see [4, 8, 9, 12, 14, 17, 18, 19, 20, 21]) and \(k\) strict pseudo-contractions via the normal Mann’s iterative algorithm has been extensively investigated by many authors (see [1, 7, 13, 15, 16, 22, 23]).

The normal Mann’s iterative algorithm generates a sequence \(\{x_n\}\) in the following manner:

\[
\forall x_1 \in K, x_{n+1} = (1 - \alpha_n)x_n + \alpha_nTx_n, n \geq 1
\]

(1.5)
In 1967, Browder and Petryshyn [5] established the first convergence result for k-pseudo-contractive self mappings in real Hilbert spaces. They prove weak and strong convergence theorems by using algorithm (1.5) with a constant control sequence $\{\alpha_n\} \equiv \alpha$ for all n. Afterward, Rhoades [6] generalized in part the corresponding results in [5] in the sense that a variable control sequence $\{\alpha_n\}$ was taken into consideration. Under the assumption that the domain of mapping T is compact convex, he established a strong convergence theorem by using algorithm (1.5) with a control sequence $\{\alpha_n\}$ satisfying the conditions $\alpha_1 = 1, 0 < \alpha_n < 1, \sum_{n=1}^{\infty} \alpha_n = \infty$ and $\limsup_{n \to \infty} \alpha_n = \alpha < 1 - k$. However, without the compact assumption on the domain of mapping T, in general, one cannot expect to infer any weak convergence results from Rhoades’ convergence theorem.

Very recently, G.L. Acedo and Xu [24] have proved a weak convergence theorem by using algorithm (1.6) with certain control conditions.

In this paper, motivated by G.L. Acedo and Xu [24] and the above results, we study the following iteration process (1.7) and (1.8), for $x_1 \in K$,

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) \sum_{i=1}^{N} \lambda_i T_i x_n$$

with certain control conditions.

In this paper, motivated by G.L. Acedo and Xu [24] and the above results, we study the following iteration process (1.7) and (1.8), for $x_1 \in K$,

$$\begin{cases} y_n = P_K[kx_n + (1 - k) \sum_{i=1}^{N} \lambda_i T_i x_n] \\ x_{n+1} = \beta_n x_n + (1 - \beta_n) y_n \end{cases}$$

and

$$\begin{cases} y'_n = P_K[\alpha'_n x'_n + (1 - \alpha'_n) \sum_{i=1}^{N} \lambda_i T_i x'_n] \\ x'_{n+1} = \beta'_n u_n + (1 - \beta'_n) y'_n \end{cases}$$

P_K is the metric projection of H onto K, $\{\alpha'_n\}$ and $\{\beta'_n\}$ are sequences in (0,1) satisfying appropriate conditions, we proved that $\{x_n\}$ and $\{x'_n\}$ respectively converges strongly to a common fixed point of $\{T_i\}_{i=1}^{N}$. Our results extend and improve the corresponding results in [19, 23, 24].

We will use the following notation:
1. \rightharpoonup for weak convergence and \rightarrow for strong convergence.
2. $\omega_{\omega}(x_n) = \{x : \exists x_{n_j} \rightharpoonup x\}$ denotes the weak ω-limit set of $\{x_n\}$.

2. Preliminaries

We need some Lemmas and Propositions in real Hilbert space H, which are listed as follow:

Lemma 2.1. (Marino and Xu [23]) Let H be a real Hilbert space, there hold the following identities.

(i) $\|x \pm y\|^2 = \|x\|^2 \pm 2\langle x, y \rangle + \|y\|^2, \forall x, y \in H$

(ii) $\|tx + (1-t)y\|^2 = t\|x\|^2 + (1-t)\|y\|^2 - t(1-t)\|x-y\|^2, \forall t \in [0, 1], \forall x, y \in H$
Lemma 2.2. (Demiclosedness Principle). If T is k-strict pseudo-contraction on closed convex subset K of a real Hilbert space H, then $I - T$ is demiclosed at any point $y \in H$.

Lemma 2.3. (Xu [23]). Let C be a nonempty closed convex subset of a Hilbert space H. Given $x \in H$ and $y \in C$. Then $y = P_C x$ if and only if there satisfies $\langle x - y, y - z \rangle \geq 0 \forall z \in C$.

Lemma 2.4. (see, e.g. Liu [11]). Let $\{a_n\}$ be a sequence of nonnegative real numbers that satisfies the condition

$$a_{n+1} \leq (1 - t_n)a_n + b_n + 0(t_n), n \geq 1,$$

where $\{t_n\}$ satisfies the restrictions:

(i) $t_n \to 0 (n \to \infty)$;

(ii) $\sum_{n=1}^{\infty} b_n < \infty$;

(iii) $\sum_{n=1}^{\infty} t_n = \infty$.

then $a_n \to 0$ as $n \to \infty$.

Proposition 2.5. Assume K is closed convex subset of Hilbert space H.

(i) Given an integer $N \geq 1$, assume, for each $1 \leq i \leq N$, $T_i : K \to H$ is a k_i-strict pseudo-contraction for some $0 \leq k_i < 1$. Assume $\{\lambda_i\}_{i=1}^{N}$ is a positive sequence such that $\sum_{i=1}^{N} \lambda_i = 1$. Then $\sum_{i=1}^{N} \lambda_i T_i$ is a k-strict pseudo-contraction, with $k = \max \{k_1 : 1 \leq i \leq N\}$.

(ii) Let $\{T_i\}_{i=1}^{N}$ and $\{\lambda_i\}_{i=1}^{N}$ be given as in (i) above. Suppose that $\{T_i\}_{i=1}^{N}$ has a common fixed point. Then

$$Fix(\sum_{i=1}^{N} \lambda_i T_i) = \bigcap_{i=1}^{N} Fix(T_i).$$

Proof. To prove (i), we only need to consider the case of $N = 2$. the general case can be proved by induction. Set $A = (1 - \lambda)T_1 + \lambda T_2$, where $\lambda \in (0, 1)$ and for $i = 1, 2$, T_i is a k_i-strict pseudo-contraction. Set $k = \max \{k_1, k_2\}$. We now to prove that A is a k-strict pseudo-contraction, by lemma 2.1(ii) we have

$$\|(I - A)x - (I - A)y\|^2$$

$$= \|(1 - \lambda)((I - T_1)x - (I - T_1)y) + \lambda((I - T_2)x - (I - T_2)y)\|^2$$

$$= (1 - \lambda)\|((I - T_1)x - (I - T_1)y\|^2 + \lambda\|((I - T_2)x - (I - T_2)y\|^2$$

$$\lambda(1 - \lambda)\|((I - T_1)x - (I - T_1)y - [(I - T_2)x - (I - T_2)y]\|^2$$

and observe that $T : K \to H$ is a k-strict pseudo-contraction if and only if there holds the following

$$\langle x - y, (I - T)x - (I - T)y \rangle \geq \frac{1 - k}{2}\|(I - T)x - (I - T)y\|^2$$

Indeed, putting $V = I - T$, we see that (1.1) holds if and only if

$$\|(I - V)x - (I - V)y\|^2 \leq \|x - y\|^2 + k\|Vx - Vy\|^2, \forall x, y \in K$$

(2.3)
But by lemma 2.1(i) we have
\[\| (I - V)x - (I - V)y \|^2 = \| x - y \|^2 - 2\langle x - y, Vx -Vy \rangle + \| Vx - Vy \|^2 \] (2.4)
substituting (2.4) into (2.3), we obtain (2.2). Noticing (2.1), we have
\[\langle x - y, (I - A)x - (I - A)y \rangle = (1 - \lambda)\langle x - y, (I - T_1)x - (I - T_1)y \rangle + \lambda\langle x - y, (I - T_2)x - (I - T_2)y \rangle \]
\[\geq \frac{1 - k}{2} [(1 - \lambda)\| (I - T_1)x - (I - T_1)y \|^2 + \lambda\| (I - T_2)x - (I - T_2)y \|^2] \]
\[\geq \frac{1 - k}{2} \| (I - A)x - (I - A)y \|^2 \]
Hence A is a k-strict pseudo-contraction.

To prove (ii), we can assume N = 2. It suffices to prove that Fix(A) ⊂ Fix(T_1) ∩ Fix(T_2), where A = (1 - \lambda)T_1 + \lambda T_2, with 0 < \lambda < 1. Let x ∈ Fix(A) and write A_1 = I - T_1 and A_2 = I - T_2.

Take z ∈ Fix(T_1) ∩ Fix(T_2) to deduce that
\[\| z - x \|^2 = \| (1 - \lambda)(z - T_1x) + \lambda(z - T_2x) \|^2 \]
\[= (1 - \lambda)\| z - T_1x \|^2 + \lambda\| z - T_2x \|^2 - \lambda(1 - \lambda)\| T_1x - T_2x \|^2 \]
\[\leq (1 - \lambda)(\| z - x \|^2 + k\| x - T_1x \|^2) \]
\[+ \lambda(\| z - x \|^2 + k\| x - T_2x \|^2) - \lambda(1 - \lambda)\| T_1x - T_2x \|^2 \]
\[= \| z - x \|^2 + k[(1 - \lambda)\| A_1x \|^2 + \lambda\| A_2x \|^2] - \lambda(1 - \lambda)\| A_1x - A_2x \|^2. \]
It follows that
\[\lambda(1 - \lambda)\| A_1x - A_2x \|^2 \leq k[(1 - \lambda)\| A_1x \|^2 + \lambda\| A_2x \|^2] \] (2.5)
Since (1 - \lambda)A_1x + \lambda A_2x = 0, we have
\[(1 - \lambda)\| A_1x \|^2 + \lambda\| A_2x \|^2 = \lambda(1 - \lambda)\| A_1x - A_2x \|^2 \]
This together with (2.5) implies that
\[(1 - k\lambda)(1 - \lambda)\| A_1x - A_2x \|^2 \leq 0 \]
Since 0 < \lambda < 1 and k < 1, we get \| A_1x - A_2x \| = 0 which implies T_1x = T_2x which in turns implies that T_1x = T_2x = x. Thus, x ∈ Fix(T_1) ∩ Fix(T_2). The general case can be proved by induction, this completes the proof.

Proposition 2.6. If T : K → H is a k-strict pseudo-contraction, then T is L-Lipschitzian mapping.

Proof. By (1.2), for all x, y ∈ K, we have that
\[\frac{1 - k}{2} \| (I - T)x - (I - T)y \|^2 \leq \| (I - T)x - (I - T)y, x - y \| \]
\[\leq \| (I - T)x - (I - T)y \| \| x - y \| \]
it follows that
\[\| Tx - Ty \| - \| x - y \| \leq \| (I - T)x - (I - T)y \| \]
\[\leq \frac{2}{1 - k} \| x - y \| , \]
\[\|Tx - Ty\| \leq L\|x - y\|, \quad L = \frac{3 - k}{1 - k}. \]

Proposition 2.7. If \(T \) is a \(k \)-strict pseudo-contraction on a closed convex subset \(K \) of a real Hilbert space \(H \), then the fixed point set \(F(T) \) of \(T \) is closed convex so that the projection \(P_{F(T)} \) is well defined.

Proof. Since \(T : K \to H \) is Lipschitzian, we see that \(F(T) \) is closed. Thus, we only need to see that \(F(T) \) is convex; take \(p, q \in F(T) \), and \(t \in (0, 1) \). Put \(z = (1 - t)p + tq \). by using (1.2) we have

\[\langle z_t - Tz_t, z_t - p \rangle \geq \frac{1 - k}{2}\|z_t - Tz_t\|^2 \] \hspace{1cm} (2.6)

and

\[\langle z_t - Tz_t, z_t - q \rangle \geq \frac{1 - k}{2}\|z_t - Tz_t\|^2 \] \hspace{1cm} (2.7)

Noting that \(z_t - p = t(q - p) \) and \(z_t - q = (1 - t)(p - q) \), substituting these equalities into (2.6) and (2.7), respectively, we get

\[t\langle z_t - Tz_t, q - p \rangle \geq \frac{1 - k}{2}\|z_t - Tz_t\|^2 \] \hspace{1cm} (2.8)

and

\[(1 - t)\langle z_t - Tz_t, p - q \rangle \geq \frac{1 - k}{2}\|z_t - Tz_t\|^2 \] \hspace{1cm} (2.9)

Multiplied by \((1 - t) \) and \(t \), and added up on the both sides of (2.8) and (2.9), respectively, we have

\[\frac{1 - k}{2}\|z_t - Tz_t\|^2 \leq 0, \]

which implies that \(z_t \in F(T) \). This completes the proof.

Proposition 2.8. Let \(T : K \to H \) be a \(k \)-strict pseudo-contraction with \(F(T) \neq \emptyset \). Then, \(F(P_KT) = F(T) \).

Proof. Clearly, \(F(T) \subset F(P_KT) \). Thus, we only need to show the converse inclusion. Assume that \(x = P_KTx \); then, by lemma 2.1 and lemma 2.3, we have for \(p \in F(T) \) that

\[\|Tx - p\|^2 = \|Tx - x + x - p\|^2 \]

\[= \|Tx - x\|^2 + 2\langle Tx - x, x - p \rangle + \|x - p\|^2 \]

\[= \|Tx - x\|^2 + 2\langle Tx - P_KTx, P_KTx - p \rangle + \|x - p\|^2 \]

\[\geq \|Tx - x\|^2 + \|x - p\|^2. \] \hspace{1cm} (2.10)

On the other hand, by (1.1), we have

\[\|Tx - p\|^2 \leq \|x - p\|^2 + k\|x - Tx\|^2. \] \hspace{1cm} (2.11)

Combining (2.10) and (2.11) yields

\[(1 - k)\|x - Tx\|^2 \leq 0 \]
Therefore, $x \in F(T)$. This completes the proof.

Proposition 2.9. Let $T : K \to H$ be k-strict pseudo-contraction. Define $S : K \to H$ by $Sx = \alpha x + (1 - \alpha)Tx$ for each $x \in K$. Then, as $\alpha \in [k, 1)$, S is nonexpansive such that $F(S) = F(T)$.

Proof. For all $x, y \in K$, by lemma 2.1(ii) and (1.1) we have

$$
\|Sx - Sy\|^2 = \|\alpha(x - y) + (1 - \alpha)(Tx - Ty)\|^2 \\
= \alpha\|x - y\|^2 + (1 - \alpha)\|Tx - Ty\|^2 \\
- \alpha(1 - \alpha)\|(x - y) - (Tx - Ty)\|^2 \\
\leq \alpha\|x - y\|^2 + (1 - \alpha)\|x - y\|^2 + k(1 - \alpha)\|(x - y) - (Tx - Ty)\|^2 \\
- \alpha(1 - \alpha)\|(x - y) - (Tx - Ty)\|^2 \\
= \|x - y\|^2 - (\alpha - k)(1 - \alpha)\|(x - y) - (Tx - Ty)\|^2 \\
\leq \|x - y\|^2
$$

which proves that $S : K \to H$ is nonexpansive. By the definition of S, we have $x - Sx = (1 - \alpha)(x - Tx)$, and this means that $p = Sp$ if and only if $p = Tp$. This completes the proof.

3. Main Results

Theorem 3.1. Let K be a nonempty closed convex subset of a Hilbert space H and $T_i : K \to H$ be a k_i-strictly pseudo-contractive non-self mapping, for some $0 \leq k_i < 1, k = \max\{k_i : 1 \leq i \leq N\}$. Assume the common fixed point set $\bigcap_{i=1}^{N} Fix(T_i)$ is nonempty. Let $\{x_n\}$ be generated by (1.7), i.e.,

$$
x_{n+1} = \beta_n x_n + (1 - \beta_n)P_K[kx_n + (1 - k)\Sigma_{i=1}^{N} \lambda_i T_ix_n]
$$

where $\beta_n = \alpha_n - \frac{k}{1 - k}$, $\{\lambda_i\}_{i=1}^{N}$ is a finite sequence of positive numbers, such that $\Sigma_{i=1}^{N} \lambda_i = 1$ for all $1 \leq i \leq N$. If $\{\alpha_n\}$ is chosen so that $\alpha_n \in [k, 1]$ and $\Sigma_{i=1}^{N} (\alpha_n - k)(1 - \alpha_n) = \infty$, then $\{x_n\}$ converges weakly to a common fixed point of $\{T_i\}_{i=1}^{N}$.

Proof. Let T be defined by $T = \Sigma_{i=1}^{N} \lambda_i T_i$, by proposition 2.5 (i),(ii) we know that $Fix(T) = \bigcap_{i=1}^{N} Fix(T_i)$ and T is a k-strict pseudo-contraction on K, with $k = \max\{k_i : 1 \leq i \leq N\}$. Define $S : K \to H$ by $Sx = kx + (1 - k)Tx$.

By proposition 2.9, we know that $S : K \to H$ is nonexpansive and $F(S) = F(T)$. By our assumption on T, we know $F(T) \neq \emptyset$ and hence $F(S) \neq \emptyset$.

Since $S : K \to H$ is nonexpansive, then $S : K \to H$ is k-strict pseudo-contraction on K, where $k = 0$. By proposition 2.8, we see that $F(P_K S) = F(S) \neq \emptyset$.

Since $P_K : H \to K$ is nonexpansive, we conclude that $P_K S : K \to K$ is nonexpansive.
From the control condition on $\{\alpha_n\}$, we have

$$\sum_{n=1}^{\infty} \beta_n(1 - \beta_n) = \frac{1}{(1 - k)^2} \sum_{n=1}^{\infty} (\alpha_n - k)(1 - \alpha_n) = \infty.$$

Then, by Theorem 2 given by Reich in [7] to deduce that $\{x_n\}$ converges weakly to a fixed point of $P_K S$.

Notice that $F(P_K S) = F(S) = F(T)$, we have the conclusion.

The proof is completed.

From Theorem 3.1, we can deduce Theorem 3.2 of Marino and Xu [24].

Corollary 3.2. (Xu [24]) Let K be a nonempty closed convex subset of a real Hilbert space H. Let $N \geq 1$ be an integer. Let, for each $1 \leq i \leq N$, $T_i : K \to K$, be a k_i-strict pseudo-contraction for some $0 \leq k_i < 1$. Let $k = \max\{k_i : 1 \leq i \leq N\}$. Assume the common fixed point set $\bigcap_{i=1}^{N} Fix(T_i)$ is nonempty. Assume also $\{\lambda_i\}_{i=1}^{N}$ is a finite sequence of positive numbers, such that $\sum_{i=1}^{N} \lambda_i = 1$. Given $x_0 \in K$, let $\{x_n\}_0^{\infty}$ be the sequence generated by Mann’s algorithm:

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) \sum_{i=1}^{N} \lambda_i T_i x_n$$

Assume the control sequence $\{\alpha_n\}_0^{\infty}$ is chosen so that $k < \alpha_n < 1$ for all n and

$$\sum_{n=1}^{\infty} (\alpha_n - k)(1 - \alpha_n) = \infty.$$

Then $\{x_n\}$ converges weakly to a common fixed point $\{T_i\}_1^{N}$.

Proof. We observe first that, for all $x \in K$.

$$P_K[kI + (1 - k) \sum_{i=1}^{N} \lambda_i T_i] x = [kI + (1 - k) \sum_{i=1}^{N} \lambda_i T_i] x$$

Since $T_i : K \to K$, thus $kI + (1 - k) \sum_{i=1}^{N} \lambda_i T_i : K \to K$ is a self-mapping.

For given $\{\alpha_n\}$, by the choice of $\{\beta_n\}$, we get

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) \sum_{i=1}^{N} \lambda_i T_i x_n$$

$$= [k + (1 - k) \beta_n] x_n + (1 - k)(1 - \beta_n) \sum_{i=1}^{N} \lambda_i T_i x_n$$

$$= \beta_n x_n + (1 - \beta_n)[k x_n + (1 - k) \sum_{i=1}^{N} \lambda_i T_i x_n]$$

$$= \beta_n x_n + (1 - \beta_n) P_K[k x_n + (1 - k) \sum_{i=1}^{N} \lambda_i T_i x_n]$$

Consequently, we conclude that $\{x_n\}$ converges weakly to a common fixed point of $\{T_i\}_1^{N}$ by Theorem 3.1.

The proof is completed.

Remark 3.3. Theorem 3.1 and its Corollary mainly improves Xu [24] in the following senses:

(i) relaxing the restriction on $\{\alpha_n\}$ from $(k, 1)$ to $[k, 1]$;

(ii) from k-strict pseudo-contraction self-mapping to non-self mapping.
In order to get a strong convergence theorem, we modify the iterative algorithm for k-strict pseudo-contraction. We have the following theorem.

Theorem 3.4. Let K be a nonempty closed convex subset of a Hilbert space H and $T_i: K \to H$ be a k_i-strictly pseudo-contractive nonself-mapping, for some $0 \leq k_i < 1$, let $k = \max \{k_i : 1 \leq i \leq N\}$. Assume the common fixed point set $\bigcap_{i=1}^{N} \text{Fix}(T_i)$ is nonempty. Assume also for each n, $\{\lambda_i\}_{i=1}^{N}$ is a finite sequence of positive numbers, such that $\sum_{i=1}^{N} \lambda_i = 1$ for all $1 \leq i \leq N$. Given $u \in K$ and sequences $\{\alpha'_n\}$ and $\{\beta'_n\}$ in $(0,1)$, satisfying control conditions: (i) $\sum_{n=1}^{\infty} \beta'_n = \infty$; $\beta'_n \to 0$, (ii) $k \leq \alpha'_n \leq b < 1$ for all $n \geq 1$, and (iii) $\sum_{n=1}^{\infty} |\alpha'_{n+1} - \alpha'_n| < \infty$, $\sum_{n=1}^{\infty} |\beta'_{n+1} - \beta'_n| < \infty$, or $\frac{\beta'_n}{\beta'_{n+1}} \to 1$ as $n \to \infty$, let the sequence $\{x'_n\}$ be generated by (1.8), i.e.,

$$x'_{n+1} = \beta'_n u + (1 - \beta'_n)P_K[\alpha'_n x'_n + (1 - \alpha'_n) \sum_{i=1}^{N} \lambda_i T_i x'_n]$$

Then, $\{x'_n\}$ converges strongly to a common fixed point z of $\{T_i\}_{i=1}^{N}$, where $z = P_{F(T)}u$ and $T = \sum_{i=1}^{N} \lambda_i T_i$.

Proof. 1. $\{x'_n\}$ is bounded. By Proposition 2.5, we know that $\text{Fix}(\sum_{i=1}^{N} \lambda_i T_i) = \bigcap_{i=1}^{N} \text{Fix}(T_i) \neq \emptyset$, take $p \in \bigcap_{i=1}^{N} \text{Fix}(T_i)$, from (1.8), we have

$$\|x'_{n+1} - p\| \leq \beta'_n \|u - p\| + (1 - \beta'_n) \|P_K[\alpha'_n x'_n + (1 - \alpha'_n) T x'_n] - p\|$$

$$\leq \beta'_n \|u - p\| + (1 - \beta'_n) \|\alpha'_n x'_n + (1 - \alpha'_n) T x'_n - p\|^2$$

$$= \beta'_n \|u - p\| + (1 - \beta'_n) [\alpha'_n \|x'_n - p\|^2 + (1 - \alpha'_n) \|T x'_n - p\|^2 - \alpha'_n (1 - \alpha'_n) \|x'_n - T x'_n\|^2]$$

$$= \beta'_n \|u - p\| + (1 - \beta'_n) [\|x'_n - p\|^2 - (1 - \alpha'_n) (\alpha'_n - k) \|x'_n - T x'_n\|^2]$$

$$\leq \beta'_n \|u - p\| + (1 - \beta'_n) \|x'_n - p\|^2 \leq \max\{\|u - p\|, \|x'_n - p\|\} \leq \max\{\|u - p\|, \|x'_n - p\|\} \leq \max\{\|u - p\|, \|x'_n - p\|\}$$

By induction, $\|x'_{n+1} - p\| \leq \max\{\|u - p\|, \|x'_1 - p\|\}$, $n \geq 0$, i.e., $\{x'_n\}$ is bounded.

2. $\limsup_{n \to \infty} \langle u - P_{F(T)}u, y'_n - P_{F(T)}u \rangle \leq 0$.

By Proposition 2.5, we also have T is a k-strictly pseudo-contraction on K with $k = \max\{k_i : 1 \leq i \leq N\}$. Proposition 2.6 ensures that $P_{F(T)}u$ is well defined.

$P_K[\alpha'_n I + (1 - \alpha'_n) T] : K \to K$ is a nonexpansive mapping. Indeed, by using Lemma 2.1, the definition of strictly pseudocontraction and condition (ii), we
have for all \(x, y \in K \) that

\[
\| P_K[\alpha'_n I + (1 - \alpha'_n)T]x - P_K[\alpha'_n I + (1 - \alpha'_n)T]y \| \leq \|\alpha'_n(x - y) + (1 - \alpha'_n)(Tx - Ty)\| \\
= \alpha'_n \|x - y\|^2 + (1 - \alpha'_n)\|Tx - Ty\|^2 \\
- \alpha'_n(1 - \alpha'_n)\|x - Tx - (y - Ty)\|^2 \\
\leq \alpha'_n \|x - y\|^2 + (1 - \alpha'_n)\|x - y\|^2 + k\|x - Tx - (y - Ty)\|^2 \\
- \alpha'_n(1 - \alpha'_n)\|x - Tx - (y - Ty)\|^2 \\
= \|x - y\|^2 - (1 - \alpha'_n)(\alpha'_n - k)\|x - Tx - (y - Ty)\|^2 \\
\leq \|x - y\|^2
\]

which imply that \(P_K[\alpha'_n I + (1 - \alpha'_n)T] \) is nonexpansive.

Next we prove that \(\|x'_{n+1} - x'_n\| \to 0 \) as \(n \to \infty \).

To this end, we first estimate \(\|y'_n - y'_{n-1}\| \). Set \(M_1 = \sup\{\|x'_n - Tx'_{n-1}\|\} \) and \(M_2 = \|u\| + \sup\{\|y'_n\|\} \), then, by (1.8) and noting that \(P_K[\alpha'_n I + (1 - \alpha'_n)T] \) is nonexpansive, we have

\[
\|y'_n - y'_{n-1}\| = \| P_K[\alpha'_n I + (1 - \alpha'_n)T]x'_n - P_K[\alpha'_{n-1} I + (1 - \alpha'_{n-1})T]x'_{n-1} \| \\
\leq \| P_K[\alpha'_n I + (1 - \alpha'_n)T]x'_n - P_K[\alpha'_n I + (1 - \alpha'_n)T]x'_{n-1} \| \\
+ P_K[\alpha'_n I + (1 - \alpha'_n)T]x'_{n-1} - P_K[\alpha'_{n-1} I + (1 - \alpha'_{n-1})T]x'_{n-1} \| \\
\leq \|x'_n - x'_{n-1}\| + \| P_K[\alpha'_n I + (1 - \alpha'_n)T]x'_{n-1} - P_K[\alpha'_{n-1} I + (1 - \alpha'_{n-1})T]x'_{n-1} \| \\
\leq \|x'_n - x'_{n-1}\| + M_1|\alpha'_n - \alpha'_{n-1}| \\
\]

(3.1)

then, from (3.1), we get

\[
\|x'_{n+1} - x'_n\| \leq \|(1 - \beta'_n)\|y'_n - y'_{n-1}\| + M_2|\beta'_n - \beta'_{n-1}| \\
\leq \|(1 - \beta'_n)(\|x'_n - x'_{n-1}\| + M_1|\alpha'_n - \alpha'_{n-1}|) + M_2|\beta'_n - \beta'_{n-1}| \)

(3.2)

By Lemma 2.4, we conclude that \(\|x'_n - x'_{n-1}\| \to 0 \) as \(n \to \infty \).

Noting that \(\|x'_{n+1} - y'_n\| = \beta'_n\|u - y'_n\| \to 0 \) as \(n \to \infty \), combining this and (3.2), we have \(\|x'_n - y'_n\| \to 0 \) as \(n \to \infty \).

On the other hand, by condition (ii) and (iii), we have \(\alpha'_n \to \alpha \) as \(n \to \infty \), where \(\alpha \in [k, 1) \). Define \(S : K \to H \) by \(Sx = \alpha x + (1 - \alpha)Tx \).

Then, \(S \) is nonexpansive mapping with \(F(S) = F(T) \) by proposition 2.9, it follows from proposition 2.7 that \(F(P_K S) = F(S) = F(T) \).

Set \(M_3 = \sup\{\|x'_n\| + \|Tx'_n\| : n \geq 1\} \). Since

\[
\|P_K Sx'_n - y'_n\| \leq M_3|\alpha'_n - \alpha'_{n-1}| \to 0, \ \text{as} \ n \to \infty,
\]
then we have
\[\|x_n' - P_KSx_n'\| \leq \|x_n' - y_n'\| + \|y_n' - P_KSx_n'\| \to 0, \text{ as } n \to \infty. \]

We now prove that \(\limsup_{n \to \infty} \langle u - P_{F(T)}u, y'_n - P_{F(T)}u \rangle \leq 0 \).

To see this, assume that
\[\limsup_{n \to \infty} \langle u - P_{F(T)}u, y'_n - P_{F(T)}u \rangle = \lim_{j \to \infty} \langle u - P_{F(T)}u, y'_{nj} - P_{F(T)}u \rangle. \]

Without loss of generality, assume that \(y'_{nj} \rightharpoonup p \) as \(j \to \infty \),
then \(x'_{nj} \rightharpoonup p \) and \(\|x'_{nj} - P_KSx'_{nj}\| \to 0 \) as \(j \to \infty \).

By Lemma 2.2 we have \(p \in F(P_KS) = F(T) \).

By lemma 2.3, we have that
\[\langle u - P_{F(T)}u, p - P_{F(T)}u \rangle \leq 0. \]

Hence,
\[\limsup_{n \to \infty} \langle u - P_{F(T)}u, y'_n - P_{F(T)}u \rangle \leq 0. \]

3. we prove that \(x'_n \to P_{F(T)}u \) as \(n \to \infty \).

Putting \(\gamma_n = \max \{ \langle u - P_{F(T)}u, y'_n - P_{F(T)}u \rangle, 0 \} \), then \(\gamma_n \to 0 \) as \(n \to \infty \).

By lemma 2.1, we have
\[\|x'_{n+1} - P_{F(T)}u\|^2 = (1 - \beta'_n)^2\|y'_n - P_{F(T)}u\|^2 + \beta'_n^2\|u - P_{F(T)}u\|^2 + 2\beta'_n(1 - \beta'_n)\langle u - P_{F(T)}u, y'_n - P_{F(T)}u \rangle \leq (1 - \beta'_n)\|x'_n - P_{F(T)}u\|^2 + o(\beta'_n) \]
which leads to \(x'_n \to P_{F(T)}u \) as \(n \to \infty \), by virtue of lemma 2.4.

This completes the proof.

References

Received: April, 2009