Energy and Some Hamiltonian Properties of Graphs

Rao Li

Dept. of Mathematical Sciences
University of South Carolina Aiken
Aiken, SC 29801, USA
raol@usca.edu

Abstract

Using the energy of graphs, we present sufficient conditions for some Hamiltonian properties of graphs.

Keywords: Energy of graphs, Hamiltonian property of graphs

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow that in [2]. For a graph $G = (V,E)$, $n := |V|$, $e := |E|$, and $G^c := (V,E^c)$, where $E^c := \{xy : x \in V, y \in V, x \neq y, xy \notin E\}$. For a bipartite graph $G_{BPT} = (X,Y;E)$, $G_{BPT}^c := (X,Y;E^c)$, where $E^c := \{xy : x \in X, y \in Y, xy \notin E\}$. The degree of vertex v_i is denoted by d_i. The concept of closure of a general graph G was introduced by Bondy and Chvátal [1]. The k - closure of a graph G, denoted $cl_k(G)$, is a graph obtained from G by recursively joining two nonadjacent vertices such that their degree sum is at least k. The idea for the closure of a balanced bipartite graph can be found in [1] and [6]. The k - closure of a balanced bipartite graph $G_{BPT} = (X,Y;E)$, where $|X| = |Y|$, denoted $cl_k(G_{BPT})$, is a graph obtained from G by recursively joining two nonadjacent vertices $x \in X$ and $y \in Y$ such that their degree sum is at least k. We use $C(n,r)$ to denote the number of r - combinations of a set with n distinct elements.

Let $A(G)$ be the adjacency matrix of a graph G of order n and let $\mu_1(A(G)) \leq \mu_2(A(G)) \leq ... \leq \mu_n(A(G))$ be its eigenvalues. Set $\mu_i(G) := \mu_i(A(G))$, $i = 1, 2, ..., n$. Then $\mu_1(G) \leq \mu_2(G) \leq ... \leq \mu_n(G)$ are called the eigenvalues of the graph G. The energy, denoted $E(G)$, of a graph G, is defined as
$E(G) := \sum_{i=1}^{n} |\mu_i(G)|.$

Fiedler and Nikiforov in [5] recently proved the following theorem.

Theorem 1 ([5]) Let G be a graph of order n.

[1] If $\mu_n(G^c) \leq \sqrt{n - 1}$, then G contains a Hamiltonian path unless $G = K_{n-1} + v$, where $K_{n-1} + v$ is defined as a graph that consists of a complete graph of order $n - 1$ together with an isolated vertex v.

[2] If $\mu_n(G^c) \leq \sqrt{n - 2}$, then G contains a Hamiltonian cycle unless $G = K_{n-1} + e$, where $K_{n-1} + e$ is defined as a graph that consists of a complete graph of order $n - 1$ together with a pendent edge e.

In this note, we will present theorems involving energy of graphs on some Hamiltonian properties of graphs. Some ideas and techniques developed by Fiedler and Nikiforov in [5] will be used in our proofs.

Theorem 2 Let G be a graph of order $n \geq 3$. Then G contains a Hamiltonian cycle if

$$\sqrt{(n - 1)e(G^c)}(\sqrt{n + 1} + 1) + 2e(G^c) - E(G^c) < 2n - 4.$$

Theorem 3 Let G be a graph of order $n \geq 4$. Then G contains a Hamiltonian path if

$$\sqrt{e(G^c)(\sqrt{n - 1} + 1) + 2e(G^c) - E(G^c)} < 2n - 2.$$

Theorem 4 Let $G_{BPT} = (X, Y; E)$, where $|X| = |Y| = r \geq 2$, be a balanced bipartite graph of order $n = 2r \geq 4$. Then G_{BPT} contains a Hamiltonian cycle if

$$\sqrt{e(G_{BPT}^c)(\sqrt{n - 2} + \sqrt{2}) + 2e(G_{BPT}^c) - E(G_{BPT}^c)} < 2r - 2.$$

2. **Lemmas**

We need the following results as lemmas to prove our theorems.

Lemma 1 ([1]) A graph G of order n has a Hamiltonian cycle if and only if $cl_n(G)$ has one.

Lemma 2 ([1]) A graph G of order n has a Hamiltonian path if and only if $cl_{n-1}(G)$ has one.
Lemma 3 ([3]) Let e be any edge in a graph G. then $E(G) - 2 \leq E(G - \{ e \}) \leq E(G) + 2$.

Lemma 4 ([6]) A balanced bipartite graph $G_{BPT} = (X, Y; E)$, where $|X| = |Y| = r \geq 2$, has a Hamiltonian cycle if and only if $cl_{r+1}(G_{BPT})$ has one.

3. Proofs

Proof of Theorem 2. Let G be a graph satisfying the conditions in Theorem 2 and G does not have a Hamiltonian cycle. Then $H := cl_n(G)$ does not have a Hamiltonian cycle and therefore H is not K_n. Thus there exist two vertices x and y in $V(H)$ such that $xy \not\in E(H)$ and for any pair of nonadjacent vertices u and v in $V(H)$ we have $d_H(u) + d_H(v) \leq n - 1$. Hence for any pair of adjacent vertices u and v in $V(H^c)$ we have that $d_{H^c}(u) + d_{H^c}(v) = n - 1 - d_H(u) + n - 1 - d_H(v) \geq n - 1$. So

$$\sum_{uv \in E(H^c)} d_{H^c}(u) + d_{H^c}(v) \geq (n - 1)e(H^c).$$

Moreover,

$$\sum_{v \in V(H^c)} d_H^2(v) = \sum_{uv \in E(H^c)} d_{H^c}(u) + d_{H^c}(v) \geq (n - 1)e(H^c).$$

From the inequality of Hofmeister [4], we have that $n\mu_n^2(H^c) \geq (n - 1)e(H^c)$, i.e.,

$$\mu_n(H^c) \geq \sqrt{\frac{(n - 1)e(H^c)}{n}}.$$

From the definition of $E(H^c)$ and Cauchy - Schwartz inequality, we have that

$$E(H^c) = \sum_{i=1}^n |\mu_i(H^c)| \leq \mu_n(H^c) + \sqrt{(n - 1)\sum_{i=1}^{n-1} \mu_i^2(H^c)}$$

$$= \mu_n(H^c) + \sqrt{(n - 1)(\sum_{i=1}^n \mu_i^2(H^c) - \mu_n^2(H^c))}$$

$$= \mu_n(H^c) + \sqrt{(n - 1)(2e(H^c) - \mu_n^2(H^c))}.$$

Now consider the function $f(x) = x + \sqrt{(n - 1)(2e(H^c) - x^2)}$. It can be easily verified that $f(x)$ is monotonously decreasing when $\sqrt{\frac{2e(H^c)}{n}} \leq x \leq \mu_n(H^c)$.

\[\sqrt{2e(H^c)}. \]

Notice that
\[\frac{\sqrt{2e(H^c)}}{n} \leq \sqrt{\frac{(n-1)e(H^c)}{n}} \leq \mu_n(H^c) \leq \sqrt{2e(H^c)}. \]

Hence
\[E(H^c) \leq f(\mu_n(H^c)) \leq f\left(\sqrt{\frac{(n-1)e(H^c)}{n}}\right) = \sqrt{\frac{(n-1)e(H^c)}{n}}(\sqrt{n+1} + 1). \]

Set \(r := e(H) - e(G) \). Then \(e(G^c) - e(H^c) = (C(n, 2) - e(G)) - (C(n, 2) - e(H)) = r \). Since \(H \) has two nonadjacent vertices \(x \) and \(y \) such that \(d_H(x) + d_H(y) \leq n - 1 \), then \(e(H) \leq (n-1) + C(n-2, 2) = (n^2 - 3n + 4)/2 \). Hence \(r \leq (n^2 - 3n + 4)/2 - e(G) = (n^2 - 3n + 4)/2 - (C(n, 2) - e(G^c)) = e(G^c) - n + 2. \)

From Lemma 3, we have that \(E(H^c) \geq E(G^c) - 2r \). Thus \(E(H^c) \geq E(G^c) - 2e(G^c) + 2n - 4 \). Since \(e(H^c) \leq e(G^c) \), we have that
\[E(G^c) - 2e(G^c) + 2n - 4 \leq \sqrt{\frac{(n-1)e(G^c)}{n}}(\sqrt{n+1} + 1), \]
a contradiction.

Proof of Theorem 3. Let \(G \) be a graph satisfying the conditions in Theorem 2 and \(G \) does not have a Hamiltonian path. Then \(H := c_{l_{n-1}}(G) \) does not have a Hamiltonian path and therefore \(H \) is not \(K_n \). Thus there exist two vertices \(u \) and \(v \) in \(V(H) \) such that \(u \neq \emptyset \) \(E(H) \) and for any pair of nonadjacent vertices \(u \) and \(v \) in \(V(H) \) we have \(d_H(u) + d_H(v) \leq n - 2 \). Hence for any pair of adjacent vertices \(u \) and \(v \) in \(V(H^c) \) we have that \(d_{H^c}(u) + d_{H^c}(v) = n - 1 - d_H(u) + n - 1 - d_H(v) \geq n \). Using similar arguments as in Proof of Theorem 2, we can show that
\[E(H^c) \leq \sqrt{e(G^c)}(\sqrt{n+1} + 1). \]
\[E(H^c) \geq E(G^c) - 2e(G^c) + 2n - 2. \]
Therefore, we have that
\[E(G^c) - 2e(G^c) + 2n - 2 \leq \sqrt{e(G^c)}(\sqrt{n+1} + 1), \]
a contradiction.

Proof of Theorem 4. Let \(G_{BPT} = (X, Y; E) \), where \(|X| = |Y| = r \geq 2 \), be a balanced bipartite graph of order \(n = 2r \geq 4 \) satisfying the conditions in Theorem 4 and \(G \) does not have a Hamiltonian cycle. Then \(H_{BPT} := c_{l_{r+1}}(G_{BPT}) \) does not have a Hamiltonian cycle and therefore \(H_{BPT} \) is not \(K_{r,r} \).
Thus there exist a vertex $x \in X$ and a vertex $y \in Y$ such that $xy \notin E(H_{BPT}^c)$ and for any pair of nonadjacent vertices $u \in X$ and $v \in Y$ we have that $d_{H_{BPT}^c}(u) + d_{H_{BPT}^c}(v) \leq r$. Hence in H_{BPT}^c for any pair of adjacent vertices $u \in X$ and $v \in Y$ we have that $d_{H_{BPT}^c}(u) + d_{H_{BPT}^c}(v) = r - d_{H_{BPT}^c}(u) + r - d_{H_{BPT}^c}(v) \geq r$. So

$$\sum_{uv \in E(H_{BPT}^c)} d_{H_{BPT}^c}(u) + d_{H_{BPT}^c}(v) \geq re(H_{BPT}^c).$$

Moreover, we have that

$$\sum_{v \in V(H_{BPT}^c)} d_{H_{BPT}^c}^2(v) = \sum_{uv \in E(H_{BPT}^c)} d_{H_{BPT}^c}(u) + d_{H_{BPT}^c}(v) \geq re(H_{BPT}^c).$$

From the inequality of Hofmeister [4], we have that

$$2r\mu_n^2(H_{BPT}^c) \geq \sum_{v \in V(H_{BPT}^c)} d_{H_{BPT}^c}^2(v) \geq re(H_{BPT}^c).$$

So $\mu_n(H_{BPT}^c) \geq \sqrt{e(H_{BPT}^c)/2}$.

Since H_{BPT}^c is a bipartite graph, $\mu_n(H_{BPT}^c) = -\mu_1(H_{BPT}^c)$. From the definition of $E(H_{BPT}^c)$ and Cauchy - Schwartz inequality, we have that

$$E(H_{BPT}^c) = \sum_{i=1}^{n} |\mu_i(H_{BPT}^c)| \leq 2\mu_n(H_{BPT}^c) + \sqrt{(n - 2) \sum_{i=2}^{n-1} \mu_i^2(H_{BPT}^c)}$$

$$= 2\mu_n(H_{BPT}^c) + \sqrt{(n - 2) (\sum_{i=1}^{n} \mu_i^2(H_{BPT}^c) - 2\mu_n^2(H_{BPT}^c))}$$

$$= 2\mu_n(H_{BPT}^c) + \sqrt{(n - 2) (2e(H_{BPT}^c) - 2\mu_n^2(H_{BPT}^c))}.$$

Now consider the function $f(x) = 2x + \sqrt{(n - 2)(2e(H_{BPT}^c) - 2x^2)}$. It can be easily verified that $f(x)$ is monotonously decreasing when $\sqrt{\frac{2e(H_{BPT}^c)}{n}} \leq x \leq \sqrt{e(H_{BPT}^c)}$. Notice that

$$\sqrt{\frac{2e(H_{BPT}^c)}{n}} \leq \sqrt{\frac{e(H_{BPT}^c)}{2}} \leq \mu_n(H_{BPT}^c) \leq \sqrt{e(H_{BPT}^c)}.$$

Hence

$$E(H_{BPT}^c) \leq f(\mu_n(H_{BPT}^c)) \leq f\left(\sqrt{\frac{e(H_{BPT}^c)}{2}}\right) = \sqrt{e(H_{BPT}^c)}(\sqrt{n - 2} + \sqrt{2}).$$
Set \(s := e(H_{BPT}) - e(G_{BPT}) \). Then \(e(G^c_{BPT}) - e(H^c_{BPT}) = (r^2 - e(G_{BPT})) - (r^2 - e(H_{BPT})) = s \). Since \(H_{BPT} \) has two nonadjacent vertices \(x \in X \) and \(y \in Y \) such that \(d_{H_{BPT}}(x) + d_{H_{BPT}}(y) \leq r \), then \(e(H_{BPT}) \leq (r - 1)^2 + r = r^2 - r + 1 \). Hence \(s \leq r^2 - r + 1 - e(G_{BPT}) = r^2 - r + 1 - (r^2 - e(G^c_{BPT})) = e(G^c_{BPT}) - r + 1 \).

From Lemma 3, we have that \(E(H^c_{BPT}) \geq E(G^c_{BPT}) - 2s \). Thus

\[
E(H^c_{BPT}) \geq E(G^c_{BPT}) - 2e(G^c_{BPT}) + 2r - 2.
\]

Since \(e(H^c_{BPT}) \leq e(G^c_{BPT}) \), we have that

\[
E(G^c_{BPT}) - 2e(G^c_{BPT}) + 2r - 2 \leq \sqrt{e(G^c_{BPT})(\sqrt{n} - 2 + \sqrt{2})},
\]

a contradiction. \(\diamond \)

References

Received: April, 2009