Numerical Solution to Belousov – Zhabotinskii

Model and a Comparison with

the Finite Difference Method

* S. Benmehdi and **N. Benhamidouche

*University of Bourdj Bouarerridj, Algeria
**University of M’Silal, Algeria
sabah_benmehdi@yahoo.fr, benhamidouche@yahoo.fr

Abstract

In this work, we find a numerical solution to Belousov – Zhabontinskii system, we use the traveling wavelets method. It is well known that this model describes a chemical reaction. The results obtained are compared with those derived from the finite difference method.

The principle of the traveling wavelets method consists in seeking the solution in the form:

\[u(x,t) = \sum_{i=1}^{N} c_i(t) \Psi \left(x - \frac{b_i(t)}{a_i(t)} \right) \quad , \quad a_i > 0 \quad , \quad b_i , c_i \in R \]

Where the function \(\Psi \) is some wavelet function and \(c_i , a_i , b_i \) are parameters depending on time, amplitude, scale and position respectively. Without loss of generality, we will focus our study only on the one dimensional case.

Mathematics Subject Classification: 35B40, 35K55, 35K57, 65T60

Keywords: Traveling wavelets method; reaction- diffusion system; Belousov-Zhabotinskii model; finite difference method
1. Introduction

The Belousov-Zhabotinskii model is described by the system:

\[
\begin{align*}
\frac{\partial u_1}{\partial t} &= \frac{\partial^2 u_1}{\partial x^2} + u_1 (1 - u_1 - ru_2) \\
\frac{\partial u_2}{\partial t} &= \frac{\partial^2 u_2}{\partial x^2} - bu_1 u_2
\end{align*}
\]

This system has been studied by a number of authors; in 1979 R. J. Field and W. C. Troy [8] studies the existence of solitary Travelling Wave Solutions, G. B. Yu, C. Z. Xiong [4] and L. Zhibin, S. He [6] has found the solution by the travelling wave method.

In this paper, we use the travelling wavelets method to find the solution of Belousov-Zhabotinskii (for r=b=1), the basics of this method is described bellow (see also[1], [10] for more details), it’s applied in several areas in astrophysics by N.Benhamidouche, B.Torresani and R.Triay [7] and by J.Elezgaray [5] in fluid mechanics.

By using this method we obtain a numerical solution which is exactly the same when we use the finite difference method for some choice of the wavelet.

Global existence in time of solution to reaction diffusion systems: [3]

Global existence in time of solutions to reaction diffusion systems in the form:

\[
\begin{align*}
\frac{\partial u_1}{\partial t} - d_1 \Delta u_1 &= f(u_1, u_2) \\
\frac{\partial u_2}{\partial t} - d_2 \Delta u_2 &= g(u_1, u_2)
\end{align*}
\]

Where \(d_1 = d_2 > 0 \) are the coefficients of diffusion and \(f, g : R^2 \to R \)

Represent the non linear interactions, with the following two properties:

1) \(\forall u_1, u_2 \geq 0 : f(0, u_2), g(u_1, 0) \geq 0 \)

2) \(f(u_1, u_2) + g(u_1, u_2) \leq 0 \)

In the Belousov-Zhabontinskii framework, the global existence in time of solutions is verified with these two properties:
Belousov-Zhabotinskii model

1) \(\forall u_1, u_2 \geq 0 : f(0, u_1, u_2) = g(u_1, 0) = 0 \)

2) \(u_1 + (r + b) u_2 \geq 1 \)

2. The traveling wavelets method (TWM) [1]

The traveling wavelets method seeks an approximate solution of the evolution problem:

\[
\begin{cases}
\frac{\partial u}{\partial t} + A_x u = 0 \\
u(x,0) = u_0(x)
\end{cases}
\]

(1 - 2)

Under the form

\[
u(x,t) = \sum_{i=1}^{N} c_i(t) \Psi \left(\frac{x - b_i(t)}{a_i(t)} \right), \quad a_i > 0, \quad b_i, c_i \in \mathbb{R}
\]

Where \(u(x, t) \) is a function of space and time variables, and \(A_x \) is a differential linear or nonlinear operator, \(\Psi \) is any wavelet, \(c_i, a_i, b_i \) are the parameters of amplitude, scale, and position depending on time, governess the atom \(\psi \) such that:

\[
\Psi'(x,t) = c_i(t) \Psi \left(\frac{x - b_i(t)}{a_i(t)} \right)
\]

The parameters \(c_i, a_i, b_i \) are obtained by the minimizing problem where the error is calculated at any moment \(t \):

\[
\text{Min} \int_{c_i, a_i, b_i \in \mathbb{R}} \left(\frac{\partial u}{\partial t} + A_x \right)^2 dx,
\]
Therefore, we obtain three equations which read as follows:

\[
\begin{align*}
\frac{\partial}{\partial c_i} \left(\frac{\partial u}{\partial t} + A_x \frac{\partial u}{\partial t} + A_x \right) &= 0 \\
\frac{\partial}{\partial a_i} \left(\frac{\partial u}{\partial t} + A_x \frac{\partial u}{\partial t} + A_x \right) &= 0 \quad \text{for } i = 1, N \\
\frac{\partial}{\partial b_i} \left(\frac{\partial u}{\partial t} + A_x \frac{\partial u}{\partial t} + A_x \right) &= 0
\end{align*}
\]

Where \(\langle \cdot, \cdot \rangle \) is the inner product in \(L^2(R) \).

Then the minimization problem leads to the system of 3N equations given by:

\[
\begin{align*}
\left(\frac{\partial u}{\partial t} + A_x u, \Psi' \right) &= 0 \\
\left(\frac{\partial u}{\partial t} + A_x u, x \Psi'' \right) &= 0 \quad (1-3) \\
\left(\frac{\partial u}{\partial t} + A_x u, \Psi'' \right) &= 0
\end{align*}
\]

This method transforms the problem (1-3) to a system of ordinary differential, equations of unknowns \(c_i, a_i, b_i \) given in the form:

\[
\begin{pmatrix}
\dot{c}_i \\
\dot{a}_i \\
\dot{b}_i
\end{pmatrix} = M \begin{pmatrix}
c_i \\
a_i \\
b_i
\end{pmatrix} = F \left(c_i(t), a_i(t), b_i(t) \right)
\]

Where \(M \) is a matrix in order 3N that comes from the term \(\frac{\partial u}{\partial t} \), and \(F \) the second member comes from the term \(A_x u \).

3. The traveling wavelets method to solving the model of Bélousov-Zhabontinskii
With the traveling wavelets method we will seek the solutions of the system (1-1) (for $r=b=1$) in the following form:

$$u_1(x,t) = \Psi^1(x,t)$$
$$u_2(x,t) = \Psi^2(x,t)$$

$$\Psi^1(x,t) = c_1(t)\Psi_1 \left(\frac{x-b_1(t)}{a_1(t)} \right)$$
$$\Psi^2(x,t) = c_2(t)\Psi_2 \left(\frac{x-b_2(t)}{a_2(t)} \right)$$

The initial conditions are:

$$u_1(x,0) = c_1(0)\Psi_1 \left(\frac{x-b_1(0)}{a_1(0)} \right) \text{ with } c_1(0) = 1, b_1(0) = 0, a_1(0) = 1$$
$$u_2(x,0) = c_2(0)\Psi_2 \left(\frac{x-b_2(0)}{a_2(0)} \right) \text{ with } c_2(0) = 1, b_2(0) = 0, a_2(0) = 1$$

We note: $(x\Psi')^i = \left(\frac{x-b_i(t)}{a_i(t)} \right)\Psi^u$

The minimization problem is written as follow:

$$\min_{c_1, a_1, b_1} \left| \frac{\partial u_1}{\partial t} - \frac{\partial^2 u_1}{\partial^2 x} - u_1 \left(1 - u_1 - u_2 \right) \right|^2$$
$$\min_{c_2, a_2, b_2} \left| \frac{\partial u_2}{\partial t} - \frac{\partial^2 u_2}{\partial^2 x} + u_1 u_2 \right|^2$$

Therefore, we obtain six equations:
Which are written as a linear system of ordinary differential equation in the form:

\[
\begin{bmatrix}
\frac{\partial u_1}{\partial t} - \frac{\partial^2 u_1}{\partial^2 x} - u_1(1-u_1-u_2), \Psi^1
\frac{\partial u_1}{\partial t} - \frac{\partial^2 u_1}{\partial^2 x} - u_1(1-u_1-u_2), \Psi^1
\frac{\partial u_1}{\partial t} - \frac{\partial^2 u_1}{\partial^2 x} - u_1(1-u_1-u_2), \Psi^1
\frac{\partial u_2}{\partial t} - \frac{\partial^2 u_2}{\partial^2 x} + u_2, \Psi^2
\frac{\partial u_2}{\partial t} - \frac{\partial^2 u_2}{\partial^2 x} + u_2, \Psi^2
\frac{\partial u_2}{\partial t} - \frac{\partial^2 u_2}{\partial^2 x} + u_2, \Psi^2
\end{bmatrix} = 0
\]

Which are written as a linear system of ordinary differential equation in the form:

\[
\begin{pmatrix}
M_1 & 0
0 & M_2
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_1 \\
a_1 \\
a_1 \\
b_1 \\
b_1 \\
-\frac{a_2}{a_2} \\
-\frac{a_2}{a_2} \\
-\frac{b_2}{a_2}
\end{pmatrix}
= \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}
\]

(1.4)
Belousov-Zhabotinskii model

\[M_i = \begin{pmatrix}
\langle \Psi^i, \Psi^i \rangle & \langle \Psi^i, x \Psi^i \rangle & \langle \Psi^i, x^2 \Psi^i \rangle \\
\langle x \Psi^i, \Psi^i \rangle & \langle x \Psi^i, x \Psi^i \rangle & \langle x \Psi^i, x^2 \Psi^i \rangle \\
\langle \Psi^i, \Psi^i \rangle & \langle \Psi^i, x \Psi^i \rangle & \langle \Psi^i, x^2 \Psi^i \rangle
\end{pmatrix} \]

and

\[
F_1 = \frac{1}{a_1} \begin{pmatrix}
\langle \Psi^i + \Psi^i (1 - \Psi^i - \Psi^2), \Psi^i \rangle \\
\langle \Psi^i + \Psi^i (1 - \Psi^i - \Psi^2), x \Psi^i \rangle \\
\langle \Psi^i + \Psi^i (1 - \Psi^i - \Psi^2), x^2 \Psi^i \rangle
\end{pmatrix},
F_2 = \frac{1}{a_2} \begin{pmatrix}
\langle \Psi^i + \Psi^i (1 - \Psi^i - \Psi^2), \Psi^2 \rangle \\
\langle \Psi^i + \Psi^i (1 - \Psi^i - \Psi^2), x \Psi^2 \rangle \\
\langle \Psi^i + \Psi^i (1 - \Psi^i - \Psi^2), x^2 \Psi^2 \rangle
\end{pmatrix}
\]

To calculate the solution, it is necessary to make a choice of wavelets. The family of the following functions:

\[K_m(x) = (-1)^m \frac{d^m}{dx^m} \exp\left(-\frac{x^2}{2}\right), m \geq 1, \]

Where \(K_m \) is a derivative of a Gaussian function, are good wavelet candidates for the following reasons:

- The inner product in the matrix and the second member expressed analytically by the function of unknown \(c_i, a_i, b_i \).

- The following properties of the integral are very interesting:

\[
\int K_m(x) dx = 0 \text{ for } m = 0, l - 1
\]

\[
\int K_m(x) K_n(x) K_l(x) dx = 0 \text{ for } m + n + l \text{ is an odd}
\]

- These wavelets have another property due mainly to which properties of Hermite polynomials.

Then for \(\Psi_1(x) = K_m(x), \Psi_2(x) = K_n(x) \).

In this case, our matrix will becomes as follows:
\[M_1 = \frac{a_1 c_1^2 \sqrt{\pi} 2m!}{2^{2m} m!} \begin{pmatrix} 1 & -1 & 0 \\ -1 & m + \frac{3}{4} & 0 \\ 0 & 0 & m + \frac{1}{2} \end{pmatrix}, \quad M_2 = \frac{a_2 c_2^2 \sqrt{\pi} 2n!}{2^{2n} n!} \begin{pmatrix} 1 & -1 & 0 \\ -1 & n + \frac{3}{4} & 0 \\ 0 & 0 & n + \frac{1}{2} \end{pmatrix} \]

The following notation will be used:

\[T_m(u, v) = a_1 c_1^2 \int \limits_{R} K_m(ux + v)K_n(x)dx \]

\[w = \frac{a_1}{a_2}, \quad \nu = \frac{b_1 - b_2}{a_2} \]

and the second member is

\[
F_1 = \begin{cases}
\frac{c_1^2}{a_1} T_{m+2,m+1}(1,0) + a_1 c_1^2 T_{m,m}(1,0) - c_1^3 J_{m,m,m}(1,0, a_1) - \\
- \frac{c_1^2}{a_1} (T_{m+2,m+1}(1,0) + (m + 1)T_{m+2,m}(1,0)) + \\
a_1 c_1^2 (T_{m,m,m}(1,0) + (m + 1)T_{m,m,m}(1,0)) + \\
c_1^3 (J_{m,m,m+2}(1,0, a_1) + (m + 1)J_{m,m,m}(1,0, a_1)) + \\
c_2 c_1^2 (J_{m,m,m+2}(u,v,a_1) + (m + 1)J_{m,m,m}(u,v,a_1)) + \\
c_1^3 J_{m,m,m+1}(1,0, a_1) + c_1 c_2^2 J_{m,m,m+1}(u,v,a_1)
\end{cases}
\]

\[
F_2 = \begin{cases}
\frac{c_2^2}{a_2} T_{n+2,n+1}(1,0) - c_2^2 c_1 J_{m,n,n}(u,v,a_1) - \\
- \frac{c_2^2}{a_2} (T_{n+2,n+1}(1,0) + (n + 1)T_{n+2,n}(1,0)) + \\
c_2^2 c_1 (J_{m,n,n+1}(u,v,a_1) + (n + 1)J_{m,n,n}(u,v,a_1)) + \\
c_2^2 c_1 J_{m,n,n+1}(u,v,a_1)
\end{cases}
\]
The system (1-4) is a system of nonlinear differential equations that can be integrated by classical numeric method of integration. For the solution, we will process by calculating the reverse of the matrix M_1, M_2 by using an idea of the conjugate gradient method. Then we integrate the system obtained, which gives $X = M^{-1}F$ by using the method of Adams-Bashfors, (Ref [7]).

For the accuracy of our solution, we need to evaluate the error depending on the choice of m and n.

4. Evaluation of error [7], [9], [10]

Let: $V(t) = \{\Psi^{(i)}, \Psi^{(i+1)} \} i = 1, 2$

From relations (1-2), we deduce that $\frac{\partial u}{\partial t} + A_u u$ is orthogonal to $V(t)$

and as $\frac{\partial u}{\partial t}$ belongs to $V(t)$

We find: $\left\langle \frac{\partial u}{\partial t} + A_u u, \frac{\partial u}{\partial t} \right\rangle = 0$

and thus if also $A_u u$ belongs to $V(t)$ then the method provides us an exact solution. In our problem $A_u u$ does not belong to $V(t)$ and we must evaluate the errors:

Consider

$$\Delta_1(u_1) = \left\| \frac{\partial u_1}{\partial t} - \frac{\partial^2 u_1}{\partial^2 x} - u_1(1 - u_1 - u_2) \right\|^2$$

And

$$\Delta_2(u_2) = \left\| \frac{\partial u_2}{\partial t} - \frac{\partial^2 u_2}{\partial^2 x} + u_1 u_2 \right\|^2$$

We put
\[resd_i = \sqrt{\varepsilon_i} \quad i = 1,2 \] with \(\varepsilon_i = \left\| \frac{\partial u_1}{\partial t} - \frac{\partial^2 u_1}{\partial x^2} - u_1(1 - u_1 - u_2) \right\|^2 \) and \(\varepsilon_2 = \left\| \frac{\partial u_2}{\partial t} - \frac{\partial^2 u_2}{\partial x^2} + u_1 u_2 \right\|^2 \)

5. The numerical results

The numerical results obtained by this method are found on board

![Comparison of errors in L^2 norm](image1)

![Comparison of errors in L^2 norm](image2)

Figure (5-1)

Comment

The errors corresponding to the cases \(m=n=0 \) is the weakest compared to the other case \(m=0, n=1 \), \(m=0, n=2 \) therefore the approximate solution \(m=n=0 \) is the best solution.
This is the behavior of the solution for the case $m=n=0$, for various iteration:

![Graph of solution $u_2(t,x)$](image1)

![Graph of solution $u_1(t,x)$](image2)

Figure (5-2)

Conclusion:

The evaluation of the errors ensures us that the best solution obtained by the TWM is the case $m=n=0$

6. B-Z solving by the finite differences method (FDM)

There are three types of basic methods for solving such equations: explicit, implicit and Crank-Nicholson type methods.

We will solve our system by schema implicit.

The numerical results obtained by the FDM for $m=n=0$

For iteration 100
The solution $u_2(t,x)$ by FDM for various time for $m=n=0$ with $dt=0.001$, number of time steps=100.

The solution $u_1(t,x)$ by the FDM for various time for $m=n=0$ with $dt = 0.001$, number of time steps=100.

Figure (6-1)

Comparison with the finite differences method:

By comparing our solutions obtained with those of the finite differences method for various values of m and n, we note that the case corresponding $m=n=0$, provides practically the same solution, i.e. the behavior for the two methods is the same (Figure (5-2)).

And for a detailed account of this step see the Ref [9].

Figure (6-2)

We will compare the absolute errors between the solutions obtained by the TWM and the solution obtained by the FDM for various choices of m and n.

The solution $u_2(t,x)$ by the FDM and TWM for iteration:500

The solution $u_1(t,x)$ by the FDM and by the TWM for iteration 500
Belousov-Zhabotinskii model

Figure (6-3)

For example the absolute error between the solutions obtained by the two methods, for the case \(m=n=0 \) is of order 0.006 for the first solution and 0.003 for the second solution (figure (5-3)), on the other hand for the other cases, we notice significant differences between various solutions obtained by the two methods, the absolute error between the solutions for the case \(m=0, n=1 \) is of order 0.012 for the first solution and 0.004 for the second solution, for the case \(m=0, n=2 \) are of order 0.006 for the first solution and 0.018 for the second solution.

Conclusion:

The traveling wavelets method gives us a very rich choice to represent the solution of the system of Béloousov-Zhabotinskii. It appears that the \(m=n=0 \) choice gives the best approximation compared to other choices of \(m \) and \(n \) and that corresponds to the condition of existence and uniqueness of the positive solution.
References

Received: June 16, 2008