A Monte Carlo Comparison between Ridge and Principal Components Regression Methods

Yazid M. Al-Hassan
Ministry of Education, Jordan
yazid_12111980@yahoo.com

Mowafaq M. Al-Kassab
Faculty of Science, Al al-Bayt University, Mafraq, Jordan
mowafaq2002@yahoo.co.uk

Abstract. A basic assumption concerned with general linear regression model is that there is no correlation (or no multicollinearity) between the explanatory variables. When this assumption is not satisfied, the least squares estimators have large variances and become unstable and may have a wrong sign. Therefore, we resort to biased regression methods, which stabilize the parameter estimates. Ridge regression (RR) and principal components regression (PCR) are two of the most popular biased regression methods. In this article, we used Monte Carlo experiments to estimate the regression coefficients by RR and PCR methods. A comparison between RR and PCR methods was made in the sense of having smaller mean squares error (MSE). Based on this simulation study, we found that RR method performs better than PCR method.

Mathematics Subject Classification: 62J07; 62H25; 65C05

Keywords: Multicollinearity, ridge regression, principal component regression, mean squares error.

1. Introduction
In multiple linear regression model, we usually assume that the explanatory variables are independent. However, in practice, there maybe strong or near to strong linear relationships among the explanatory variables. In that case, the independent assumptions are no longer valid, which causes the problem of multicollinearity.
In the presence of multicollinearity, it is impossible to estimate the unique effects of individual variables in the regression equation. Moreover, the least squares (LS) estimates are likely to be too large in the absolute value and, possibly, of the wrong sign. Therefore, multicollinearity becomes one of the serious problems in the linear regression analysis.

Many attempts have been made to improve the LS estimation procedure. In general, there are two approaches. One approach centers at finding (biased) estimators which have smaller MSE than the LS estimators. RR, as well as many shrinkage type of estimators (stein, 1960; Sclove, 1968), is one example. This approach does not directly address itself to the issue of multicollinearity, even though multicollinearity is often the situation where the aforementioned procedures (or estimators) are used.

Among these estimators, the ridge estimator points indirectly to the issue of multicollinearity by constraining the length of the coefficient estimator (Hocking, 1976). In contrast, the second approach deals straightforward with the dependency nature of the explanatory variables. The PCR, as well as the latent root regression and the factor analysis approach, is one such example. The PCR imposes linear constraints on the estimators. These constraints reflect the nature of linear dependency among the explanatory variables.

The ridge estimators are defined through a parameter k, the value of which must be chosen in order to produce a particular estimate of the regression coefficients. On the other hand, the principal component estimators are obtained by using less than the full set of principal components to explain the variations in the dependent variable.

The objective of this article is to make a comparison between RR and PCR methods based on the MSE criterion.

2. Methods

Consider the standard model for multiple linear regression

$$\mathbf{y} = \mathbf{X}\beta + \mathbf{e},$$

where \mathbf{y} is an $n \times 1$ column vector of observations on the dependent variable, \mathbf{X} is an $n \times p$ fixed matrix of observations on the explanatory variables and is of full rank p ($p \leq n$), β is a $p \times 1$ unknown column vector of regression coefficients, and \mathbf{e} is an $n \times 1$ vector of random errors; $E(\mathbf{e}) = 0, E(\mathbf{ee}') = \sigma^2 \mathbf{I}_n$, where \mathbf{I}_n denotes the $n \times n$ identity matrix. The variables are assumed to be standardized so that $\mathbf{X}'\mathbf{X}$ is in the form of correlation matrix, and the vector $\mathbf{X}'\mathbf{y}$ is the vector of correlation coefficients of the dependent variable with each explanatory variable. LS estimator, $\hat{\beta}$, of the parameters are given by

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$
2.1 Ridge Regression

Hoerl and Kennard (1970a) suggested the use of $X'X + kI_p$, $(k \geq 0)$ rather than $X'X$, in the estimation of β (Eq. (2)). The resulting estimators of β are known in literature as the RR estimators, given by

$$\hat{\beta}(k) = (X'X + kI_p)^{-1}X'y$$ \hspace{1cm} (3)

The constant k is known as biasing or ridge parameter. As k increases from zero and continues up to infinity, the regression estimates tend toward zero. Though these estimators result in bias, for certain value of k, they yield minimum MSE compared to the LS estimator (Hoerl and Kennard, 1970a). However, the $\text{MSE}(\hat{\beta}(k))$ will depend on unknown parameters k, β and σ^2, which cannot be calculated in practice. But k has to be estimated from the real data instead.

Several methods for estimating k have been proposed and evaluated by several researchers. Some of these researchers are Hoerl and Kennard (1970a), Hoerl et al. (1975), McDonald and Galarneau (1975), Lawless and Wang (1976), Hocking et al. (1976), Wichern and Churchill (1978), Nordberg (1982), Saleh and Kibria (1993), Singh and Tracy (1999), Wencheko (2000), Kibria (2003), Khalaf and Shukur (2005) and Al-Hassan (2009).

In order to describe these methods, it is convenient to write the linear regression model (1) in canonical form. Suppose, there exists an orthogonal matrix D such that $D'CD = \Lambda$, where $C = X'X$ and $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_p)$ contains the eigenvalues of the matrix C, then the canonical form of the model (1) is

$$y = X^*a + e,$$ \hspace{1cm} (4)

where $X^* = XD$ and $\alpha = D'\beta$. Then the LS estimator is given as follows

$$\hat{\alpha} = \Lambda^{-1}X^*y,$$ \hspace{1cm} (5)

and so we can write the RR estimator as

$$\hat{\alpha}(k) = (X^*X^* + K)^{-1}X^*y,$$ \hspace{1cm} (6)

where $K = \text{diag}(k_1, k_2, \ldots, k_p)$, $k_i > 0$. Eq. (6) is called the general form of ridge regression (Hoerl and Kennard, 1970a). It follows from Hoerl and Kennard (1970a) that the value of k_i which minimizes the $\text{MSE}(\hat{\alpha}(K))$, where

$$\text{MSE}(\hat{\alpha}(K)) = \sigma^2 \sum_{i=1}^{p} \frac{\lambda_i}{(\lambda_i + k_i)^2} + \sum_{i=1}^{p} \frac{k_i^2 \alpha_i^2}{(\lambda_i + k_i)^2},$$ \hspace{1cm} (7)

is

$$k_i = \frac{\sigma^2}{\alpha_i^2}.$$ \hspace{1cm} (8)
where \(\sigma^2 \) represents the error variance of model (1), \(\alpha_i \) is the \(i \)th element of \(\alpha \).

Equation (8) gives a value of \(k_i \) that fully depends on the unknowns \(\sigma^2 \) and \(\alpha_i \), and must be estimated from the observed data. Hoerl and Kennard (1970a) suggested the replacement of \(\sigma^2 \) and \(\alpha_i \) by their corresponding unbiased estimators, that is,

\[
\hat{k}_i = \frac{\hat{\sigma}^2}{\hat{\alpha}_i^2},
\]

where \(\hat{\sigma}^2 = \sum e_i^2 / n - p \) is the residual mean square estimate, which is an unbiased estimator of \(\sigma^2 \), and \(\hat{\alpha}_i \) is the \(i \)th element of \(\hat{\alpha} \), which is an unbiased estimator of \(\alpha \).

Below we present some methods for estimating ridge parameter \(k \).

1. **Hoerl and Kennard Method (\(\hat{k}_{HK} \) or HK)**
 Hoerl and Kennard (1970a) found that the best method for achieving a better estimate \(\hat{\beta}(k) \) is to use \(k_i = k \) for all \(i \), and they suggested \(k \) is to be,

\[
\hat{k}_{HK} = \frac{\hat{\sigma}^2}{\max(\hat{\alpha}_i^2)}
\]

2. **Hoerl, Kennard and Baldwin Method (\(\hat{k}_{HKB} \) or HKB)**
 Hoerl, Kennard and Baldwin (1975) proposed a different estimator of \(k \) by taking the harmonic mean of \(\hat{k}_i \) in Eq. (9). That is

\[
\hat{k}_{HKB} = \frac{p\hat{\sigma}^2}{\sum_{i=1}^{p} \hat{\alpha}_i^2}
\]

3. **Lawless and Wang Method (\(\hat{k}_{LW} \) or LW)**
 Lawless and Wang (1976) proposed the following estimator

\[
\hat{k}_{LW} = \frac{p\hat{\sigma}^2}{\sum_{i=1}^{p} \hat{\lambda}_i \hat{\alpha}_i^2}
\]

4. **Hocking, Speed and Lynn Method (\(\hat{k}_{HSL} \) or HSL)**
 Hocking, Speed and Lynn (1976) suggested the following estimator for \(k \)
\[\hat{k}_{HSL} = \sigma^2 \frac{\sum_{i=1}^{p} (\lambda_i \hat{\alpha}_i)^2}{\left(\sum_{i=1}^{p} \lambda_i \alpha^2_i \right)^2} \]

(13)

5. Khalaf and Shukur Method (\(\hat{k}_{KS} \) or KS)

Khalaf and Shukur (2005) suggested a new approach for choosing the ridge parameter \(k \) by adding the amount \(\hat{\sigma}^2/\max(\lambda_i) \) to the denominator of the right hand side of Eq.(10) which is a function of the correlation between the independent variables. The proposed estimator is

\[\hat{k}_{KS} = \frac{\max(\lambda_i) \hat{\sigma}^2}{(n - p - 1) \hat{\sigma}^2 + \max(\lambda_i) \cdot \max(\hat{\alpha}_i)^2} \]

(14)

2.2 Principal Component Regression

In principal components analysis, the \(p \) original variables are transformed into linear combinations called principal components. Principal components were first proposed by Person (1901) and further developed by Hotelling (1933). Comprehensive surveys of the field have been given by Jolliffe (1986), Jackson (1991) and Basilevsky (1994). Other reviews are by Rao (1964), Jackson (1980, 1981), Wold et al. (1987), Duntman (1989) (Rencher, 1998) and Jolliffe (2005).

As we have indicated, an approach to the problem of multicollinearity is PCR, in which \(y \) is regressed on the principal components of \(X \)'s. If we use only the larger principal components, the large variances in \(\hat{\beta}_j \)'s due to multicollinearity are reduced, but of course we introduce some bias in the new \(\hat{\beta}_j \)'s. Often, the principal components with the highest variance are selected. However, the low-variance principal components may also be important, and in some cases, they may even more important than those with the highest variances (Jolliffe, 1982).

PCR was first proposed by Hotelling (1957) and Kendal (1957). Hsuan (1981) explored the relationship between PCR and RR. He proved that when the data are severely multicollinear, the ridge estimator can be made very close to the principal components estimators. Bay and Parker (1984) and Nomura and Ohkubo (1985) showed that additional gains in expected squared error of the estimators can be made by combining RR and PCR.

To write the PCR estimator, let \(X^* = XD \) be the matrix of the principal components of \(C \), where \(D \) is the matrix of \(p \) (normalized) eigenvectors of \(C \). Using Eq. (5) we get

\[\hat{\alpha} = (X^*X)^{-1}X^*y \]

(15)

Thus, the reduced model can be written as

\[\hat{\alpha}_q = (X_q^*X_q)^{-1}X_q^*y \]
where \(X_q' = XD_q \), \(D_q \) is the matrix of the first \(q \) eigenvectors of \(C \), and \(\Lambda_q \) is a diagonal matrix that contains the first \(q \) eigenvalues of \(C \).

Now to obtain regression coefficients for the original variables, we can solve for \(\alpha = D \beta \) to obtain \(\beta = D \alpha \), since \(D \) is orthogonal. The estimated value of \(\beta \) is \(\hat{\beta}_{pc} = D \hat{\alpha} \). Thus, for the reduced model we have

\[
\hat{\beta}_{pc} = D_{q} \hat{\alpha}_{q}
\]

Substituting (16) in (17), we obtain the principal components estimator

\[
\hat{\beta}_{pc} = D_{q} \Lambda_{q}^{-1} X' y
\]

The MSE of \(\hat{\beta}_{pc} \) is given by the following (Rencher, 1998; Al-Hassan, 2007)

\[
\text{MSE}(\hat{\beta}_{pc}) = \sigma^2 \sum_{i=1}^{q} \frac{1}{\lambda_i} + \sum_{i=q+1}^{p} (d'_i \beta)^2
\]

where \(d'_i \) is the \(i \)th eigenvector of \(C \), \(q + 1 < i < p \). For the detailed derivation of \(\hat{\beta}_{pc} \) and \(\text{MSE}(\hat{\beta}_{pc}) \) see [Al-Hassan, 2007, section 3.3.1] and [Rencher, 1998, section 9.8].

The purpose of principal components is to generate a reduced set of variables that account for most of the variance of the original variables. We must therefore decide just how many components to retain; other components will be discarded. In reality, the number of components extracted in a principal component analysis is equal to the number of observed variables being analyzed. However, Mansfield et al (1977) suggested that only the first few components account for meaningful amounts of variance, so only these first few components are retained and used in multiple regression analyses.

Jolliffe (1982) represents the point of view of many statisticians whose decisions depend only on the magnitude \(\lambda \) of the variance of the principal component and others who give examples in which the principal components of small variance must be selected.

Moreover, several studies have evaluated the performance of these rules using real and simulated data. Some of these studies are Jolliffe (1972; 1973), Yeomans and Golder (1982), Jackson (1993), King and Jackson (1999), Peres-Neto et al (2003; 2005) and Cangelosi and Goriely (2007).

Rules include (among others): the broken stick model, the Kaiser-Guttman test, Log-Eigenvalue (LEV) diagram, Velicer's Partial Correlation Procedure, Cattell's SCREE test, cross-validation, bootstrapping techniques, cumulative percentage of
Monte Carlo comparison

total of variance, and Bartlett's test for equality of eigenvalues. For a description of these and other methods see [Jackson (1991), Section 2.8] and [Jolliffe (2002), Section 6.1].

In this study, we will use the broken stick model to decide how many components to retain. This rule provide a good combination of simplicity of calculation and accurate evaluation of dimensionality relative to other stopping rules (Jackson, 1993). Jackson (1993) and King and Jackson (1999) showed that this method performs well, at least when variables are highly correlated. Moreover, Cangelosi and Goriely (2007) recommended the use of the broken stick model. In the following paragraphs we introduce a brief description of the broken stick model.

The broken stick model

If one assumes that the total variance in a multivariate data set is divided at randomly amongst all components, the expected distribution of the eigenvalues can be assumed to follow a broken-stick distribution (Legendre and Legendre, 1998). The idea underlying the model is that if a stick is randomly broken into \(p \) pieces, \(b_1 \) would be the average size of the largest piece in each set of broken sticks, \(b_2 \) would be the average size of the second largest piece, and so on. In the case of correlation matrices (i.e., standardized variables), \(p \) equals the number of components and the total amount of variation across all components.

This method was proposed by Frontier (1976). Frontier (1976) and Legendre and Legendre (1983) provide a table of eigenvalues based on the broken-stick distribution, but the solution is easily computed as :

\[
b_k = \sum_{i=1}^{p} \frac{1}{i} \quad (20)
\]

where \(p \) is the number of variables and \(b_k \) is the size of eigenvalue for the \(k \)th component under the broken-stick model. A modification of (20) made by Legendre and Legendre (1998) is

\[
b_k = \frac{1}{p} \sum_{i=1}^{p} \frac{1}{i} \quad (21)
\]

If the \(k \)th component has an eigenvalue that is larger than \(b_k \), then the component should be retained.

3. The Monte Carlo Simulations

In this section, we will discuss the simulation study that compares the performance of ridge estimators with principal components estimator under several degrees of multicollinearity. We consider five different ridge estimators corresponding to five different values of ridge parameter \(k \). These values of \(k \) are \(k_{HK}, k_{HKB}, k_{LW}, k_{HSL} \) and \(k_{KS} \); which were calculated using equations (10), (11), (12), (13) and (14), respectively. As for the principal components estimator, we used the broken stick model to decide how many components to retain.
Thirty observations are generated for each of twenty explanatory variables, i.e. \(n = 30, \ p = 20 \). McDonald and Galarneau (1975), Wichern and Churchill (1978), Gibbons (1981), Kibria (2003) and other researchers used the following device to generate the explanatory variables
\[
x_{ij} = (1 - \gamma^2)^{\frac{1}{2}} z_{ij} + \gamma z_{ij_i}, \ i = 1, 2, \ldots, 30, \ j = 1, 2, \ldots, 20
\]
where \(z_{ij} \) are independent standard normal pseudo-random numbers, \(z_{i21} \) is the \(i \)th element of the column vector of random error \(Z_{21} \), \(\gamma \) is specified so that the correlation between any two explanatory variables is given by \(\gamma^2 \).

To take the number of correlated variables in consideration, we modified the previous device (Eq. (22)) to be
\[
x_{ij} = (1 - \gamma^2)^{\frac{1}{2}} z_{ij} + \gamma Z_{i21}, \ i = 1, 2, \ldots, 30, \ j = 1, 2, \ldots, m
\]
where \(m \) is the number of correlated variables which varies from 2 to 20, that is, we have 19 cases of correlation: \((x_1 \text{ and } x_2) \), \((x_1 , x_2 \text{ and } x_3) \), \ldots, \((x_1 , x_2 , \ldots, x_{19} \text{ and } x_{20}) \). The variables are then standardized so that \(X'X \) and \(X'y \) are in correlation forms. Five different sets of correlation are considered corresponding to \(\gamma^2 = 0.35, 0.51, 0.67, 0.84 \) and 0.99. These values of \(\gamma^2 \) will include a wide range of low, moderate and high correlation between variables.

The \(n \) observations for the dependent variable \(y \) are determined by
\[
y_i = \lambda_1 x_{i1} + \lambda_2 x_{i2} + \ldots + \lambda_p x_{ip} + e_i, \ i = 1, \ldots, n
\]
where \(e_i \) are independent normal \((0, \sigma^2)\) pseudo-numbers.

As we indicated, the comparison is based on the MSE criteria, so we evaluated the MSEs for each estimator. The MSEs of ridge estimators are evaluated by Eq. (7) while the MSE of the principal components estimator is evaluated by Eq. (19).

4. Results

Our primary interest here lies in comparing the MSEs of the considered estimators, so we evaluate the MSE for all estimators. Also, to identify the efficiency of each estimator, we calculate the relative efficiency between each two estimators.

There are 19 experiments, the results of each experiment consist of five tables; each table displays the MSE of each estimator and the relative efficiencies between the estimators under one level of correlation. The MSEs are arranged in descending order, i.e., from the worst to the best. The first column of each table contains the values of ridge parameter \(k \) of each method and the number of principal components retained.
Monte Carlo comparison

As a sample of these results, we introduce the results of Experiment 10 (the correlation between variables x_1, x_2, \ldots, x_{10} and x_{11}) in Tables 1-5. Note that the complete results are available from the corresponding author.

Table 1: The relative efficiency of PC with respect to ridge estimators when correlation coefficient is $\gamma^2 = 0.35$.

<table>
<thead>
<tr>
<th>Method</th>
<th>MSE</th>
<th>PC</th>
<th>HSL</th>
<th>HK</th>
<th>KS</th>
<th>LW</th>
<th>HKB</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0.3680060</td>
<td>100%</td>
<td>0.0029164</td>
<td>HSL</td>
<td>0.1323230</td>
<td>36.0%</td>
<td>100%</td>
</tr>
<tr>
<td>0.01369160</td>
<td>KS</td>
<td>0.1131540</td>
<td>30.7%</td>
<td>85.5%</td>
<td>89.4%</td>
<td>100%</td>
<td>0.03045480</td>
</tr>
<tr>
<td>0.04242070</td>
<td>HKB</td>
<td>0.0996465</td>
<td>27.1%</td>
<td>75.3%</td>
<td>78.8%</td>
<td>88.1%</td>
<td>97.1%</td>
</tr>
</tbody>
</table>

Table 2: The relative efficiency of PC with respect to ridge estimators when correlation coefficient is $\gamma^2 = 0.51$.

<table>
<thead>
<tr>
<th>Method</th>
<th>MSE</th>
<th>PC</th>
<th>HK</th>
<th>HSL</th>
<th>KS</th>
<th>LW</th>
<th>HKB</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0.0556748</td>
<td>100%</td>
<td>0.00125520</td>
<td>HK</td>
<td>0.0276588</td>
<td>49.7%</td>
<td>100%</td>
</tr>
<tr>
<td>0.004080540</td>
<td>KS</td>
<td>0.0259501</td>
<td>46.6%</td>
<td>93.8%</td>
<td>94.1%</td>
<td>100%</td>
<td>0.010158300</td>
</tr>
<tr>
<td>0.020258400</td>
<td>HKB</td>
<td>0.0208806</td>
<td>37.5%</td>
<td>75.5%</td>
<td>75.7%</td>
<td>80.5%</td>
<td>89.4%</td>
</tr>
</tbody>
</table>

Table 3: The relative efficiency of PC with respect to ridge estimators when correlation coefficient is $\gamma^2 = 0.67$.

<table>
<thead>
<tr>
<th>Method</th>
<th>MSE</th>
<th>PC</th>
<th>HK</th>
<th>HSL</th>
<th>KS</th>
<th>LW</th>
<th>HKB</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.0507352</td>
<td>100%</td>
<td>0.000138596</td>
<td>HK</td>
<td>0.0065473</td>
<td>12.9%</td>
<td>100%</td>
</tr>
<tr>
<td>0.000345261</td>
<td>KS</td>
<td>0.0064895</td>
<td>12.8%</td>
<td>99.1%</td>
<td>99.8%</td>
<td>100%</td>
<td>0.000877755</td>
</tr>
<tr>
<td>0.0004540220</td>
<td>HKB</td>
<td>0.0055699</td>
<td>11.0%</td>
<td>85.1%</td>
<td>85.7%</td>
<td>85.8%</td>
<td>87.8%</td>
</tr>
</tbody>
</table>

Table 4: The relative efficiency of PC with respect to ridge estimators when correlation coefficient is $\gamma^2 = 0.84$.

<table>
<thead>
<tr>
<th>Method</th>
<th>MSE</th>
<th>PC</th>
<th>HK</th>
<th>HSL</th>
<th>KS</th>
<th>LW</th>
<th>HKB</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.1515080</td>
<td>100%</td>
<td>0.00012215</td>
<td>HK</td>
<td>0.0026689</td>
<td>1.8%</td>
<td>100%</td>
</tr>
<tr>
<td>0.00026205</td>
<td>KS</td>
<td>0.0026817</td>
<td>1.8%</td>
<td>99.7%</td>
<td>100.0%</td>
<td>100%</td>
<td>0.00050061</td>
</tr>
<tr>
<td>0.000447000</td>
<td>HKB</td>
<td>0.0024847</td>
<td>1.6%</td>
<td>92.4%</td>
<td>92.6%</td>
<td>92.7%</td>
<td>93.1%</td>
</tr>
</tbody>
</table>
Table 5: The relative efficiency of PC with respect to ridge estimators when correlation coefficient is $\gamma^2 = 0.99$.

<table>
<thead>
<tr>
<th>Method</th>
<th>MSE</th>
<th>PC</th>
<th>HK</th>
<th>HSL</th>
<th>KS</th>
<th>LW</th>
<th>HKB</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 PC</td>
<td>0.1724590</td>
<td>100%</td>
<td>0.0022895</td>
<td>1.3%</td>
<td>99.8%</td>
<td>100%</td>
<td>0.000000030</td>
</tr>
<tr>
<td>0.000000061 HSL</td>
<td>0.0022847</td>
<td>1.3%</td>
<td>99.8%</td>
<td>100%</td>
<td>100%</td>
<td>0.000000063</td>
<td></td>
</tr>
<tr>
<td>0.00000112 KS</td>
<td>0.0022845</td>
<td>1.3%</td>
<td>99.8%</td>
<td>100.0%</td>
<td>100%</td>
<td>0.00000111</td>
<td></td>
</tr>
<tr>
<td>0.00001340 HKB</td>
<td>0.0021340</td>
<td>1.2%</td>
<td>93.2%</td>
<td>93.4%</td>
<td>93.4%</td>
<td>93.7%</td>
<td>100%</td>
</tr>
</tbody>
</table>

To compare the performance of the considered estimators, we will consider the following criterion.

4.1 Performance as a function of γ^2

For given m, all of ridge estimators perform better than PC estimator for all sets of correlation. Moreover, HKB, LW and KS estimators, respectively, perform better than the other estimators for all sets of correlation. On the other hand, for high correlations ($\gamma^2 = 0.84$ and 0.99) the estimators KS, HSL, HK become almost equivalent. For given m, as γ^2 increases, the MSEs of ridge estimators decrease. As for PC estimator, there is no evident relation between γ^2 and the MSE. But as γ^2 increases the number of retained components q decreases.

4.2 Performance as a function of m

For given γ^2, also all of ridge estimators perform better than PC estimator, and HKB, LW and KS estimators, respectively, perform better than the other estimators for all sets of correlation. For $\gamma^2 = 0.84$ and 0.99 and $m > 3$, there is a direct relation between m and the MSE of PC estimator. As for the ridge estimators, we didn’t see any relation between m and the MSEs.

5. Conclusions and recommendations

In this article we have evaluated the performance of some of ridge estimators and the principal component estimator (using broken stick model) by comparing them based on the mean squares criteria. The evaluation has been done using Monte Carlo simulations where levels of correlation and the number of correlated variables have been varied. Given the results of our simulation study, certain conclusions emerge. In general, these conclusions are restricted to the set of experimental conditions investigated.

It is obvious from the simulation results that all of the ridge estimators perform better than the PC estimator for all sets of correlation and for all values of m. Besides, HKB, LW and KS estimators, respectively, perform better than the other estimators. Based on the results, we recommend RR over PCR as a biased estimation procedure. As we stated earlier, several ridge estimators uniformly dominated PC estimator. Moreover, these results lead us to recommend that HKB estimator is to be used to estimate the ridge parameter k, as one of the good estimators.
Monte Carlo comparison

References

Monte Carlo comparison

Received: January, 2009