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Abstract

In this paper the Bernstein polynomials are used to approximate
the solutions of linear Volterra integral equations. Both second and
first kind integral equations, with regular, as well as weakly singular
kernels, have been considered.
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1. Introduction

Bernstein polynomials have been recently used for the solution of some lin-
ear and non-linear differential equations, both partial and ordinary, by Bhatta
and Bhatti [1] and Bhatti and Bracken [2]. Also these have been used to solve
some classes of inegral equations of both first and second kinds, by Mandal
and Bhattacharya [3]. These were further used to solve a Cauchy singular
integro-differential equation by Bhattacharya and Mandal [4].

In this paper we have developed a very simple method to solve Volterra
integral equations of both first and second kinds and having regular as well as
weakly singular kernels, using Bernstein polynomials. Bernstein polynomials
can be defined on some interval [a, b] by,

Bi,n(x) =

(
n
i

)
(x − a)i(b − x)n−i

(b − a)n
, i = 0, 1, 2, . . . , n. (1.1)

1Corresponding author. e-mail: biren@isical.ac.in
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These polynomials form a partition of unity, that is
∑n

i=0 Bi,n(x) = 1, and can
be used for approximating any function continuous in [a, b].

Volterra integral equations arise in many problems pertaining to mathe-
matical physics like heat conduction problems. Various methods are available
in the literature concerning their numerical solutions. Recently chebychev
polynomials were used by Maleknejad et.al [5], to solve certain Volterra in-
tegral equations with regular kernel, other methods include the Taylor series
expansion (cf. Maleknejad and Aghazadeh [6]) and the theory of wavelets (cf.
Maleknejad et.al [7]).

In this paper we have developed a simple method, based on approximation
of the unknown function on the Bernstein polynomial basis, for the solution
of Volterra integral equations with regular kernels, as well as weakly singular
kernels, that is Abel’s integral equation.

Abel’s integral equations possess weakly singular kernels of the type (x −
t)−α, 0 < α < 1. Although analytical solution of Abel’s integral is very
well known, yet the numerical solution is not so well pronounced due to some
computational difficulties which arise due to the presence of the differential op-
erator in the solution (cf. Golberg and Chen [8], p.27). However, the present
method avoids any such computational difficulty, and uses a very direct algo-
rithm for computation of the unknown function.

2. The General Method

A. Volterra integral equations with regular kernels

We consider the integral equation of the first kind given by,

∫ x

a
k(x, t)φ(t)dt = f(x), a < x < b, (2.1)

where φ(t) is the unknown function to be determined, k(x, t), the kernel, is
a continuous and square integrable function, f(x) being the known function
satisfying f(a) = 0.

To determine an approximate solution of (2.1), φ(t) is approximated in the
Bernstein polynomial basis on [a, b] as

φ(t) =
n∑

i=0

aiBi,n(t) (2.2)

where ai(i = 0, 1, . . . , n) are unknown constants to be determined. Substitut-
ing (2.2) in (2.1) we obtain,

n∑
i=0

aiαi(x) = f(x), a < x < b (2.3)
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where,

αi(x) =
∫ x

a
k(x, t)Bi,n(t)dt. (2.4)

We now put x = xj , j = 0, 1, . . . , n in (2.3), xj ’s being chosen as suitable
distinct points in (a, b), and x0 is taken near a and xn near b such that a <
x0 < xn < b. Putting x = xj we obtain the linear system

n∑
i=0

aiαij = fj j = 0, 1, . . . , n (2.5)

where
αij = αi(xj) i, j = 0, 1, . . . , n (2.6)

and
fj = f(xj) j = 0, 1, . . . , n. (2.7)

The linear system (2.5) can be easily solved by standard methods for the
unknown constants ai’s. These ai(i = 0, 1, . . . , n) are then used in (2.2) to
obtain the unknown function φ(t) approximately.

We now consider the second kind Volterra integral equation, given by,

c(x)φ(x) +
∫ x

a
k(x, t)φ(t)dt = f(x), a < x < b, (2.8)

where k(x, t) is a regular kernel, c(x), f(x) are known functions, then applying
the same procedure as described above, we obtain

n∑
i=0

aiβi(x) = f(x) (2.9)

where
βi(x) = c(x)Bi,n(x) +

∫ x

a
k(x, t)Bi,n(t)dt. (2.10)

Choosing xj ’s(j = 0, 1, . . . , n) as described above we obtain the linear system

n∑
i=0

aiβi,j = fj , j = 0, 1, . . . , n (2.11)

where
βij = βi(xj) i, j = 0, 1, . . . , n (2.12)

and
fj = f(xj), j = 0, 1, . . . , n. (2.13)

The system (2.11) is solved to obtain the unknown constants ai(i = 0, 1, . . . , n)
which are then used to obtain the unknown function φ(t).

B. Volterra integral equations with weakly singular kernels
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We consider the weakly singular integral equation of the first kind, that is
the Abel’s integral equation given by,

∫ x

a

φ(t)

(x − t)α
dt = f(x), a < x < b (2.14)

with 0 < α < 1 and f(a) = 0. This is a Volterra integral equation with a
weakly singular kernel. The analytical solution of (2.14) is well known (cf.
Estrada and Kanwal [9])and is given by

φ(t) =
sinαπ

π

d

dt

[∫ x

a

f(x)

(t − x)(α−1)
dx

]
. (2.15)

Since f(a) = 0, (2.15) can be simplified to the form

φ(t) =
sinαπ

π

∫ x

a
(t − x)(α−1)f

′
(x)dx. (2.16)

In order to obtain a numerical solution of (2.14) we approximate φ(t) as in
(2.2). Thus (2.14) reduces to

n∑
i=0

ai

(
n
i

)
1

(b − a)n

n∑
l=0

di,n
l

∫ x

a

tl

(x − t)α
dt = f(x), a < x < b (2.17)

where,

di,n
l =

∑
s

(−1)l−s

(
i
s

)(
n − i
l − s

)
l, i = 0, 1, . . . , n, (2.18)

the summation over s being taken as follows : for i < n < n − i, (i) s = 0 to
l for l ≤ i, (ii) s = 0 to i for i < l ≤ n − i, (iii) s = l − (n − i) to n − i for
n − i < l ≤ n while for i = n − i (n being an even integer) (i) s = 0 to l for
k ≤ i, (ii) s = l − i to i for i < l ≤ n; for i > n − i, i and n − i above are to
be interchanged. For α = 1/2, (2.17) can be written as

n∑
i=0

aiγi(x) = f(x) (2.19)

where

γi(x) =
n∑

l=0

di,n
l π1/2 Γ(1 + l)

Γ(3
2

+ l)
xl+ 1

2 . (2.20)

For proper choice of the distinct points x = xj(j = 0, 1, . . . , n) in (a, b) we
obtain the linear system,

n∑
i=0

aiγij = fj j = 0, 1, . . . , n (2.21)
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where
γij = γi(xj), i, j = 0, 1, . . . , n (2.22)

fj = f(xj), j = 0, 1, . . . , n. (2.23)

The linear system (2.22) can be solved to obtain the unknown constants
ai(i = 0, 1, . . . , n), which are then used to the approximate the unknown func-
tion φ(t).

We next consider a Volterra integral equation of the second kind with
weakly singular kernel given by

φ(x) + λ
∫ x

a

φ(t)

(t − x)α
dt = f(x), 0 < α < 1, a < x < b, (2.24)

λ being a constant.
Approximating φ(t) as before we obtain

n∑
i=0

aiμi(x) = f(x) (2.25)

where for α = 1/2,

μi(x) = Bi,n(x) + λ
n∑

l=0

di,n
l π1/2 Γ(1 + l)

Γ(3
2

+ l)
xl+ 1

2 . (2.26)

For suitable choice of x = xj , we get the linear system

n∑
i=0

aiμij = fj j = 0, 1, . . . , n (2.27)

where
μij = μi(xj) i, j = 0, 1, . . . , n (2.28)

and
fj = f(xj), j = 0, 1, . . . , n. (2.29)

Solving the linear system (2.27) for ai(i = 0, 1, . . . , n) we obtain the unknown
function φ(t) ultimately.

3. Illustrative Examples

Here we illustrate the above mentioned methods with the help of eight
illustrative examples, which include two first kind and two second kind Volterra
integral equations with regular kernels and three first kind and one second kind
Volterra integral equation with weakly singular kernels.

Example 1
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We consider the Volterra integral equation of the first kind given by,

∫ x

0

φ(t)

x2 + t2
dt = x, 0 < x < 1 (3.1)

which has the exact solution

φ(x) =
4

4 − π
x2. (3.2)

Using the method illustrated in the section (2A) we solve the linear system

n∑
i=0

aiαij = fj, j = 0, 1, . . . , n (3.3)

where now

αij =
∫ xj

0

Bi,n(t)

x2
j + t2

dt

and
fj = xj .

We choose

x0 = 10−10, xi = x0 +
i

n + 1
, i = 0, 1, . . . , n, (3.4)

so that 0 < x0 < x1 < · · · < xn < 1.
For n = 7, we solve the linear system (3.3) and obtain ai(i = 0, 1, . . . , 7).

Using these in the expansion of φ(t) given by (2.2), and choosing n = 7 the
approximate solution for φ(t) is obtained. Other values of n can also be chosen.
A plot of the absolute error between the exact solution and the approximate
solution for different values of x is depicted in Figure 1. This plot shows that
the error is of the order of 10−12.
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Fig 1 Absolute error between exact and approximate solutions of Eq.(3.1)

Example 2

We consider another first kind integral equation with a regular kernel given
by, ∫ x

0

φ(t)

(x2 + t2)
1
2

dt = x, 0 < x < 1 (3.5)

whose exact solution is
φ(x) =

x

21/2 − 1
. (3.6)

Following the procedure described above we obtain the linear system

n∑
i=0

aiαij = fj, j = 0, 1, . . . , n (3.7)

where now,

αij =
∫ xj

0

Bi,n(t)

(x2
j + t2)

1
2

dt, i, j = 0, 1, . . . , n

and
fj = xj , j = 0, 1, . . . , n.

We choose xj ’s to be the same as given by (3.4).
For n = 7 we solve the linear system (3.7) and obtain a0, . . . , a7. These

when substituted in the expansion (2.2) for n = 7 produce φ(t) approximately.
In Figure 2, the plot of the absolute error between the exact solution and

the approximate solutions shows that accuracy is of the order of 10−14.
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Fig 2 Absolute error between exact and approximate solutions of Eq.(3.5)

Example 3

We consider the second kind Volterra integral equation,

φ(x)+
∫ x

0
(t2−3x3)φ(t)dt =

1

4
[4x3 +x−1]e−2x +

3

8
[1−2x2], 0 < x < 1 (3.8)

whose exact solution is
φ(x) = xe−2x (3.9)

(cf. Polyanin and Manzhirov [10]).
Using the method described in section (2A) we obtain the linear system

n∑
i=0

aiβij = fj , j = 0, 1, . . . , n (3.10)

where

βij = Bi,n(xj) +
∫ xj

0
(t2 − 3x2

j)Bi,n(t)dt, i, j = 0, 1, . . . , n

and

fj =
1

4
[4x3

j + xj − 1]e−2xj +
3

8
[1 − 2x2

j ], j = 0, 1, . . . , n.

The linear system (3.10) when solved gives the unknown constants ai(i =
0, 1, . . . , n) from which approximate value of φ(t) is obtained by using (2.2).

For n = 13 Figure 3 gives a plot of the absolute error between the exact and
approximate solutions. This figure shows that error is of the order of 10−13.
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Fig 3 Absolute error between exact and approximate solutions of Eq.(3.8)

Example 4

We consider another Volterra integral equation of the second kind given
by,

φ(x) −
∫ x

0

1 + x

1 + t
φ(t)dt = 1 − x − 3

2
x2 +

x3

2
, 0 < x < 1 (3.11)

having the exact solution
φ(x) = 1 − x2 (3.12)

(cf. Polyanin and Manzhirov [10]).
Here,

βij = Bi,n(xj) +
∫ xj

0

1 + xj

1 + t
Bi,n(t)dt, i, j = 0, 1, . . . , n

and

fj = 1 − xj − 3

2
x2

j +
x3

j

2
, j = 0, 1, . . . , n.

We solve the system
∑n

i=0 aiβij = fj for the unknown constants ai, which
produce an approximate solution.

For n = 7, Figure 4 gives a plot of the absolute error between the exact
and approximate solutions for various values of x, and this plot shows that the
error is of the order of 10−11.
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Fig 4 Absolute error between exact and approximate solutions of Eq.(3.11)

Example 5

Here we consider the Abel integral equation given by,

∫ x

0

φ(t)

(x − t)1/2
dt = xr, 0 < x < 1 (3.13)

where r is any positive number. This is a first kind Volterra integral equation
with weak singularity.

The exact solution of the integral equation (3.13) is given by,

φ(x) =
22r−1

π
r
(Γ(r))2

Γ(2r)
xr− 1

2 . (3.14)

In one numerical example r is chosen as r = 5 (integral value) while in
another it is chosen as 3/2 (non-integral value).

a. r = 5

For r = 5 the exact solution is

φ(x) =
1280

315π
x9/2. (3.15)

Performing approximations as given in (2B) we get the linear system

n∑
i=0

aiγij = fj , j = 0, 1, . . . , n
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where,

γij =

(
n
i

)
n−i∑
s=0

(
n − i
s

)
(−1)sπ1/2 Γ(s + i + 1)

Γ(s + 1 + 3
2
)
xs+i+ 1

2 , i, j = 0, 1, . . . , n

(3.16)
and

fj = x5
j , j = 0, 1, . . . , n

xj ’s being chosen to be the same as in (3.4).
Solving the linear system (3.23) we get the unknown constants ai, which

give the approximate value of the unknown function φ(t) by using (2.2).
For n = 10, Figure 5a gives a plot of absolute error between the exact and

approximate solutions against x, and this plot shows that error is of the order
of 10−7.

Fig 5a Absolute error between exact and approximate solutions of Eq.(3.13)
for r = 5

b. r = 3/2

For r = 3/2 exact solution for φ(x) is obtained as

φ(x) =
3

4
x. (3.17)

Solving the system
∑n

i=0 aiγij = fj , j = 0, 1, . . . , n with γij being same

as in example 5a above and fj = x
3/2
j , we get the approximate value of the

unknown function, xj ’s being chosen to be the same as above. For n = 5, a
plot of the absolute error between the exact and approximate solution against
x shows that the error is of the order of 10−15.
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Fig 5b Absolute error between exact and approximate solutions of Eq.(3.13)
for r = 3

2

Example 6

Here we consider the integral equation given by

∫ x

0

φ(t)

(x − t)1/2
dt =

x1/2

2

[
1F1(1,

3

2
; ix) +1 F1(1,

3

2
;−ix)

]
, 0 < x < 1 (3.18)

’i’ here is imaginary unit, and 1F1(a, b; z) is the hypergeometric function.
Then (3.18) has the exact solution given by φ(x) = cosx. (cf. Gradshteyn

and Ryzhik [11],pp.424)
Applying the method illustrated in (2B) we get the linear system

n∑
m=0

amγmj = fj, j = 0, 1, . . . , n (3.19)

where γmj is same as in (3.16) with i replaced by m and

fj =
x

1/2
j

2

[
1F1(1,

3

2
; ixj) +1 F1(1,

3

2
;−ixj)

]
.

Solving the linear system (3.19)for n = 5 we get a0, a1, . . . , a5 which give
an approximation to the unknown function φ(x).

Figure 6, which is a plot of the absolute error against x shows that error is
of the order of 10−7.
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Fig 6 Absolute error between exact and approximate solutions of Eq.(3.18)

Example 7

In this example we consider a second kind weakly singular Volterra integral
equation given by,

φ(x) −
∫ x

0

φ(t)

(x − t)1/2
dt = x7(1 − 4096

6435
x1/2), 0 < x < 1 (3.20)

which has the exact sloution
φ(x) = x7.

Then approximating the unknown function φ(x) using Bernstein polyno-
mials and following a procedure similar to the one given in (2B) we get the
linear system

n∑
i=0

aiμij = fj , j = 0, 1, . . . , n (3.21)

where

μij = Bi,n(xj)−
(

n
i

)
n−i∑
s=0

(
n − i
s

)
(−1)sπ1/2 Γ(s + i + 1)

Γ(s + 1 + 3
2
)
xs+i+ 1

2 , i, j = 0, 1, . . . , n

and

fj = x7
j (1 − 4096

6435
x

1/2
j ), j = 0, 1, . . . , n.

For n = 10 the system (3.21) is solved for the unknowns ai(i = 0, 1, . . . , n).
These then give the approximate value of the unknown function φ(t). Figure
7 shows that the absolute error is of the order of 10−7.
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Fig 7 Absolute error between exact and approximate solutions of Eq.(3.20)

4. Conclusion

Here a very simple and straight forward method, based on approximation
of the unknown function of an integral equation on the Bernstein polynomial
basis is developed. Use of this method produces very accurate results. It may
be mentioned that the linear systems avoid appearance of any ill-conditioned
matrix.

Further, using this method, numerical solutions of Abel integral equations
are obtained quite correctly, which is otherwise somewhat difficult and tedious
process due to the presence of the differential operator in the inverse problem,
as has been pointed out in the literature.

Thus a simple method of approximation of the unknown function on the
Bernstein polynomial basis for the solution of Volterra integral equations of
first and second kinds with regular and weakly singular kernels produces very
accurate numerical results.
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