Viscosity Approximative Methods for Nonexpansive Nonself-Mappings without Boundary Conditions in Banach Spaces

Rabian Wangkeeree and Pramote Markshoe

Department of Mathematics, Faculty of Science
Naresuan University, Phitsanulok 65000, Thailand
rabianw@nu.ac.th (R. Wangkeeree)
pramotem@nu.ac.th (P. Markshoe)

Abstract. Let C be a nonempty closed convex subset of a uniformly smooth Banach space E, $T : C \to E$ be a nonexpansive mapping and P be a sunny nonexpansive retraction of E onto C. For $x_0 \in C$, the explicit iterative sequence $\{x_n\}$ is given by

$$x_{n+1} = P\left(\alpha_n f(x_n) + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)Tx_n)\right) \quad \text{for } n = 0, 1, 2, \ldots,$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in $(0, 1)$ and $[0, 1)$ respectively satisfying appropriate conditions, and $f : C \to C$ is a fixed contractive mapping. We prove that $\{x_n\}$ converges strongly to a fixed point of T without boundary conditions. The results presented extend and improve the corresponding ones announced by Chen et al. [2], and others.

Mathematics Subject Classification: 47H10, 47H09

Keywords: Nonexpansive nonself-mapping, sunny nonexpansive retraction, uniformly smooth Banach space

1. Introduction

Let C be a nonempty closed convex subset of a Banach space E, and let $T : C \to C$ be a nonexpansive mapping (i.e., $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$). We use $\text{Fix}(T)$ to denote the set of fixed points of T; that is, $\text{Fix}(T) = \{x \in C : x = Tx\}$. Recall that a selfmapping $f : C \to C$ is a contraction on C if there exists a constant $\beta \in (0, 1)$ such that

$$\|f(x) - f(y)\| \leq \beta \|x - y\|, \quad \forall x, y \in C. \quad (1.1.1)$$

1The author is supported in part by Faculty of Science, Naresuan University, Thailand.
Xu [8] defined the following two viscosity iterations for nonexpansive mappings:

\[x_t = tf(x_t) + (1 - t)Tx_t \]
(1.1.2)

and

\[x_{n+1} = \alpha_nf(x_n) + (1 - \alpha_n)Tx_n \]
(1.1.3)

where \(\{\alpha_n\} \) is a sequence in (0, 1). Xu proved the strong convergence of \(\{x_t\} \) defined by (1.1.2) as \(t \to 0 \) and \(\{x_n\} \) defined by (1.1.3) in both Hilbert space and uniformly smooth Banach space.

Recently, Song and Chen [4] proved if \(C \) is a closed subset of a real reflexive Banach space \(E \) which admits a weakly sequentially continuous duality mapping from \(E \) to \(E \), and if \(T : C \to E \) is a nonexpansive nonself-mapping satisfying the weakly inward condition, \(F(T) \neq \emptyset \), \(f : C \to C \) is a fixed contractive mapping, and \(P \) is a sunny nonexpansive retraction of \(E \) onto \(C \), then the sequences \(\{x_t\} \) and \(\{x_n\} \) defined by

\[x_t = P(tf(x_t) + (1 - t)Tx_t) \]
(1.1.4)

and

\[x_{n+1} = P(\alpha_nf(x_n) + (1 - \alpha_n)Tx_n) \]
(1.1.5)

strongly converge to a fixed point of \(T \). Very recently, Chen and Zhu [2] established the strong convergence of both \(\{x_t\} \) and \(\{x_n\} \) defined by (1.1.4) and (1.1.5) respectively, for a nonexpansive nonself-mapping \(T \) in a uniformly smooth Banach space.

Let \(C \) be a nonempty closed convex subset of a uniformly smooth Banach space \(E \), \(T : C \to E \) be a nonexpansive nonself-mapping and \(P \) be a sunny nonexpansive retraction of \(E \) onto \(C \), the purpose of this paper is to use the following iterative process : \(x_0 \in C \),

\[x_{n+1} = P(\alpha_nf(x_n) + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)Tx_n)) \quad \text{for } n = 0, 1, 2, \ldots , \]
(1.1.6)

where \(\{\alpha_n\} \) and \(\{\beta_n\} \) are sequences in (0, 1) and [0, 1) respectively, and \(f : C \to C \) is a fixed contractive mapping, to approximate to the fixed point of nonexpansive mapping \(T \) without boundary conditions. Our results extend and improve the corresponding ones announced by Chen et al. [2], and others.

2. Preliminaries

Let \(E \) be a real Banach space and let \(J \) denote the normalized duality mapping from \(E \) into \(2^{E^*} \) given by

\[J(x) = \{ f \in E^* : \langle x, f \rangle = \|x\|\|f\| = \|x\| = \|f\| \}, \forall x \in E \]

where \(E^* \) be the dual space of \(E \) and and \(\langle \cdot, \cdot \rangle \) denotes the generalized duality pairing. In the sequence, we will denote the single-valued duality mapping by \(j \), and \(x_n \to x \) will denote strong convergence of the sequence \(\{x_n\} \) to \(x \).
In Banach space E, the following result (the Subdifferential Inequality) is well known (Theorem 4.2.1 of [5]): \(\forall x, y \in E, \forall j(x + y) \in J(x + y), \forall j(x) \in J(x) \)

\[
\| x \|^2 + 2\langle y, j(x) \rangle \leq \| x + y \|^2 \leq \| x \|^2 + \langle y, j(x + y) \rangle.
\] (2.2.1)

Recall that the norm of E is said to be Gâteaux differentiable if the limit

\[
\lim_{t \to 0} \frac{\| x + ty \| - \| x \|}{t}
\] (2.2.2)

exists for each x, y in its unit sphere $U = \{ x \in E : \| x \| = 1 \}$. Such a Banach space E is called smooth. The norm of a Banach space E is also said to be uniformly Gâteaux differentiable if for each $y \in U$, the limit of (2.2.2) is attained uniformly for $x \in U$. Finally, the norm is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit in (2.2.2) is attained uniformly for $(x, y) \in U \times U$. A Banach space E is said to be smooth if and only if J is single valued. It is also well known that if E is uniformly smooth, J is uniformly norm-to-norm continuous. These concepts may be found in [5].

If C and D are nonempty subsets of a Banach space E such that C is nonempty closed convex and $D \subset C$, then a mapping $P : C \to D$ is called a retraction from C to D if $P^2 = P$. It is easily known that a mapping $P : C \to D$ is retraction, then $Px = x$, for all $x \in D$. A mapping $P : C \to D$ is called sunny if

\[
P(Px + t(x + Px)) = Px, \forall x \in C,
\] (2.2.3)

whenever $Px + t(x - Px) \in C$ for $x \in C$ and $t \geq 0$. A subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto D. For more detail, see [5].

The following lemma is well known [5].

Lemma 2.1. Let C be a nonempty convex subset of a smooth Banach space E, $D \subset C$, $J : E \to E^\ast$ the (normalized) duality mapping of E, and $P : C \to D$ a retraction. Then the following are equivalent:

(i) $\langle x - Px, j(y - Px) \rangle \leq 0$ for all $x \in C$ and $y \in D$

(ii) P is both sunny and nonexpansive.

Let C be a nonempty convex subset of a Banach space E, then for $x \in C$, the inward set is given by [6, 7]

\[
I_C(x) = \{ y \in E : y = x + \lambda(z - x), z \in C, \lambda \geq 0 \}.
\] (2.2.4)

A mapping $T : C \to E$ is said to be satisfying the inward condition if $Tx \in I_C(x)$ for all $x \in C$. T is also said to be satisfying the weakly inward condition if for each $x \in C$, $Tx \in I_C(x)$ where $I_C(x)$ is the closure of $I_C(x)$. Very recently for a nonself-mapping T from C into E, Matsushita and Takahashi [3] studied the following condition:

\[
Tx \in S^C_x
\] (2.2.5)
for all $x \in C$, where $S_x = \{ y \in C : y \neq x, Py = x \}$ and P is a sunny nonexpansive retraction from E onto C. Then they proved the following three lemmas.

Lemma 2.2. [3, Lemma 3.1] Let C be a closed convex subset of a smooth Banach space E and let T be a mapping form C into E. Suppose that C is a sunny nonexpansive retract of E. If T satisfies the condition (2.2.5), then $F(T) = F(PT)$, where P is a sunny nonexpansive retraction from E onto C.

Lemma 2.3. [3, Lemma 3.2] Let C be a closed convex subset of a smooth Banach space E and let T be a mapping form C into E. Suppose that C is a sunny nonexpansive retract of E. If T satisfies the weakly inward condition, then T satisfies the condition (2.2.5).

Lemma 2.4. [3, Lemma 3.3] Let C be a closed convex subset of a strictly convex Banach space E and let T be a nonexpansive mapping from C into E. Suppose that C is a sunny nonexpansive retract of E. If $F(T) \neq \emptyset$ then T satisfies the condition (2.2.5).

The following lemma can be founded in [1].

Lemma 2.5. [1] Let $\{s_n\}$ be a sequence of nonnegative real numbers, $\{\gamma_n\}$ a sequence of $[0,1]$ with $\sum_{n=1}^{\infty} \gamma_n = \infty$, $\{\beta_n\}$ a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} \beta_n < \infty$ and $\{\alpha_n\}$ a sequence of real numbers with $\limsup_{n \to \infty} \alpha_n \leq 0$. Suppose that

$$s_{n+1} \leq (1 - \gamma_n)s_n + \gamma_n \alpha_n + \beta_n$$

for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} s_n = 0$.

The following lemma can be founded in [8].

Theorem 2.6. [8] Let X be a uniformly smooth Banach space, C a closed convex subset of X, $T : C \rightarrow C$ a nonexpansive mapping with $\text{Fix}(T) \neq \emptyset$, and $f : C \rightarrow C$ a contractive mapping. Then as $t \to 0$, $\{x_t\}$ defined by

$$x_t = tf(t) + (1 - t)Tx_t$$

(2.2.6)

converges strongly to a fixed point q of T such that q is the unique solution in $F(T)$ to the following variational inequality:

$$\langle (f - I)q, j(q - u) \rangle \leq 0 \text{ for all } u \in F(T).$$

(2.2.7)

3. Main Results

Theorem 3.1. Let X be a uniformly smooth Banach space, C a closed convex subset of X. Suppose that C is a sunny nonexpansive retract of E with P a nonexpansive retraction. Let $T : C \rightarrow E$ a nonexpansive nonself-mapping with $\text{Fix}(T) \neq \emptyset$, and $f : C \rightarrow C$ be a contractive mapping. Then as $t \rightarrow 0$, $\{x_t\}$ defined by

$$x_t = tf(t) + (1 - t)PTx_t$$

(3.3.1)
converges strongly to a fixed point \(q \) of \(T \) such that \(q \) is the unique solution in \(F(T) \) to the following variational inequality:

\[
\langle (f - I)q, j(q - u) \rangle \leq 0 \text{ for all } u \in F(T).
\]

Proof. Applying the Theorem 2.6 with the nonexpansive self-mapping \(PT \), we obtain that \(\{x_t\} \) converges strongly as \(t \to 0 \) to a fixed point of \(PT \). Since \(F(T) \neq \emptyset \), using Lemma 2.2 and 2.4, we obtain \(F(T) = F(PT) \). The proof is complete. \(\square \)

Theorem 3.2. Let \(E \) be a uniformly smooth Banach space, \(C \) is a nonempty closed convex subset of \(E \). Suppose that \(C \) is a sunny nonexpansive retract of \(E \). Let \(T : C \to E \) be a nonexpansive nonself-mapping with \(F(T) \neq \emptyset \), and \(f : C \to C \) a fixed contractive mapping with coefficient \(\beta \in (0, 1) \). The sequence \(\{x_n\} \) is defined by (1.1.6), where \(P \) is the sunny nonexpansive retraction of \(E \) onto \(C \), \(\{\alpha_n\} \subset (0, 1) \) and \(\{\beta_n\} \subset [0, 1) \), and satisfying the following conditions:

(i) \(\lim_{n \to \infty} \alpha_n = 0 \);
(ii) \(\sum_{n=0}^{\infty} \alpha_n = \infty \);
(iii) \(\lim_{n \to \infty} \beta_n = 0 \);
(iv) \(\sum_{n=0}^{\infty} |\beta_n - \beta_{n-1}| < +\infty \);
(v) either \(\sum_{n=0}^{\infty} |\alpha_n - \alpha_{n-1}| < +\infty \) or \(\lim_{n \to \infty}(\alpha_{n+1}/\alpha_n) = 1 \).

Then as \(n \to \infty \), the sequence \(\{x_n\} \) converges strongly to a fixed point \(q \) of \(T \) such that \(q \) is the unique solution in \(F(T) \) to the variational inequality (3.3.2).

Proof. First we show that \(\{x_n\} \) is bounded. Take \(u \in F(T) \), it follows that

\[
\|x_{n+1} - u\| = \|P(\alpha_n f(x_n) + (1 - \alpha_n) (\beta_n x_n + (1 - \beta_n)Tx_n)) - Pu\| \\
\leq \|\alpha_n f(x_n) + (1 - \alpha_n) (\beta_n x_n + (1 - \beta_n)Tx_n) - u\| \\
\leq \alpha_n \|f(x_n) - u\| + (1 - \alpha_n) \|\beta_n x_n - u\| + (1 - \beta_n) \|Tx_n - u\| \\
\leq \alpha_n \beta \|x_n - u\| + \alpha_n \|f(u) - u\| + (1 - \alpha_n) \beta_n \|x_n - u\| \\
+ (1 - \beta_n)(1 - \alpha_n) \|x_n - u\| \\
= (1 - (1 - \beta_n)\alpha_n) \|x_n - u\| + \alpha_n \|f(u) - u\| \\
\leq \max\{\|x_n - u\|, \frac{1}{1 - \beta} \|f(u) - u\|\}.
\]

By induction, we have

\[
\|x_n - u\| \leq \max\{\|x_0 - u\|, \frac{1}{1 - \beta} \|f(u) - u\|\}, \forall n \geq 0.
\]

Therefore \(\{x_n\} \) is bounded, so are \(\{Tx_n\} \) and \(\{f(x_n)\} \). Then we get that

\[
\|x_{n+1} - PTx_n\| = \|P(\alpha_n f(x_n) + (1 - \alpha_n) (\beta_n x_n + (1 - \beta_n)Tx_n)) - PTx_n\| \\
\leq \|\alpha_n f(x_n) + (1 - \alpha_n) (\beta_n x_n + (1 - \beta_n)Tx_n) - Tx_n\| \\
\leq \alpha_n \|f(x_n) - Tx_n\| + (1 - \alpha_n) \|\beta_n x_n + (1 - \beta_n)Tx_n - Tx_n\| \\
= \alpha_n \|f(x_n) - Tx_n\| + (1 - \alpha_n) \beta_n \|x_n - Tx_n\|.
\]
Indeed we have
\[
\sum_{n=1}^{\infty} \frac{1}{a_n s_n} = 0 \quad \text{as} \quad n \to \infty.
\]

Next we shall show that
\[
\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.
\]

Indeed we have
\[
\|x_{n+1} - x_n\| = \|P(\alpha_n f(x_n) + (1 - \alpha_n)\beta_n x_n + (1 - \beta_n)Tx_n) - P(\alpha_n f(x_n) + (1 - \alpha_n)\beta_n x_n + (1 - \beta_n)Tx_n)\|
\leq \alpha_n\|f(x_n) - f(x_n)\| + |\alpha_n - \alpha_n - 1|\|f(x_n)\|
+ (1 - \alpha_n)\|\beta_n x_n + (1 - \beta_n)Tx_n - \beta_n x_n - (1 - \beta_n)Tx_n\|
+ |\alpha_n - \alpha_n - 1|\|\beta_n x_n + (1 - \beta_n)Tx_n\|
\leq \alpha_n\|x_n - x_n\| + |\alpha_n - \alpha_n - 1|\|f(x_n)\|
+ (1 - \alpha_n)\|\beta_n x_n - x_n\| + |\beta_n - \beta_n - 1|\|x_n - x_n\|
+ |\beta_n - \beta_n - 1|\|Tx_n - Tx_n\| + |\alpha_n - \alpha_n - 1|\|\beta_n x_n + (1 - \beta_n)Tx_n\|
+ |\beta_n - \beta_n - 1|\|x_n - x_n\| + |\alpha_n - \alpha_n - 1|\|Tx_n - Tx_n\|
= \alpha_n\|x_n - x_n\| + (1 - \alpha_n)\|x_n - x_n\| + |\alpha_n - \alpha_n - 1|\|f(x_n)\|
+ |\beta_n - \beta_n - 1|\|x_n - x_n\| + |\alpha_n - \alpha_n - 1|\|Tx_n - Tx_n\|
\leq 1 - (1 - \beta)\alpha_n\|x_n - x_n\| + K_n,
\]
where \(K_n = |\alpha_n - \alpha_n - 1|\|f(x_n)\| + |\beta_n - \beta_n - 1|\|x_n - x_n\| + (1 - \alpha_n)\|\beta_n - \beta_n - 1|\|x_n - x_n\| + |\alpha_n - \alpha_n - 1|\|Tx_n - Tx_n\| \). Since \(\{x_n\} \) is bounded, there exists a positive constant \(K \) such that
\[
K_n \leq K(|\alpha_n - \alpha_n - 1| + |\beta_n - \beta_n - 1|),
\]
thus,
\[
\|x_{n+1} - x_n\| \leq (1 - (1 - \beta)\alpha_n)\|x_n - x_n\| + K(|\alpha_n - \alpha_n - 1| + |\beta_n - \beta_n - 1|).
\]

Assume that \(\sum_{n=0}^{\infty} |\alpha_n - \alpha_n - 1| < +\infty \). By Lemma 2.5 and the conditions on \(\{\alpha_n\} \) and \(\{\beta_n\} \) we get the required result.

Assume that \(\lim_{n \to \infty} (\alpha_{n+1}/\alpha_n) = 1 \). Then from (3.3.5), we have
\[
\|x_{n+1} - x_n\| \leq (1 - (1 - \beta)\alpha_n)\|x_n - x_n\| + \alpha_n|1 - \alpha_{n-1}/\alpha_n|K + K|\beta_n - \beta_n - 1|.
\]

By Lemma 2.5 and the conditions on \(\{\alpha_n\} \) and \(\{\beta_n\} \) we also get the required result. Using (3.3.3) and (3.3.4), we get
\[
\|x_n - PTx_n\| \leq \|x_n - x_n\| + \|x_{n+1} - PTx_n\| \to 0 \quad \text{as} \quad n \to \infty.
\]

Let \(q = \lim_{t \to 0} x_t \), where \(\{x_t\} \) is defined in Theorem 3.1, we get that \(q \) is the unique solution in \(F(T) \) following the variational inequality:
\[
\langle (f - I)q, j(q - u) \rangle \leq 0 \quad \text{for all} \quad u \in F(T).
\]

Next we shall show that
\[
\lim_{n \to \infty} \sup_{n \to \infty} \langle f(q) - q, j(x_n - q) \rangle \leq 0.
\]
Using the inequality (2.2.1), we have
\[x_t - x_n = t(f(x_t) - x_n) + (1 - t)(PTx_t - x_n). \] (3.3.10)

It follows from (3.3.7) that
\[b_n(t) = \|x_n - PTx_n\|\|x_n - PTx_n\| + 2\|x_n - x_t\| \to 0 \text{ as } n \to \infty. \] (3.3.11)

Using the inequality (2.2.1), we have
\[
\begin{align*}
\|x_t - x_n\|^2 & \leq (1 - t)^2\|PTx_t - x_n\|^2 + 2t(f(x_t) - x_n, j(x_t - x_n)) \\
& \leq (1 - t)^2\|PTx_t - PTx_n + PTx_n - x_n\|^2 + 2t(f(x_t) - x_t, j(x_t - x_n)) \\
& \quad + 2t\|x_t - x_n\|^2 \\
& \leq (1 - t)^2\|x_t - x_n\|^2 + (1 - t)^2\|x_n - PTx_n\|^2 \\
& \quad + 2(1 - t)^2\|PTx_n - x_n\|\|x_t - x_n\| + 2t(f(x_t) - x_t, j(x_t - x_n)) \\
& \quad + 2t\|x_t - x_n\|^2 \\
& \leq (1 + t)^2\|x_t - x_n\|^2 + b_n(t) + 2t(f(x_t) - x_t, j(x_t - x_n)).
\end{align*}
\] (3.3.12)

The last inequality implies
\[
\langle f(x_t) - x_t, j(x_n - x_t) \rangle \leq \frac{t}{2}\|x_t - x_n\|^2 + \frac{1}{2t}b_n(t).
\] (3.3.13)

It follows from (3.3.11) that
\[
\limsup_{n \to \infty} \langle f(x_t) - x_t, j(x_n - x_t) \rangle \leq M\frac{t}{2},
\] (3.3.14)

where \(M \) is a constant such that \(M \geq \|x_t - x_n\| \) for all \(t \in (0, 1) \). By letting \(t \to 0 \) in the last inequality we have
\[
\lim_{t \to 0} \limsup_{n \to \infty} \langle f(x_t) - x_t, j(x_n - x_t) \rangle \leq 0.
\] (3.3.15)

On the other hand, for all \(\varepsilon > 0 \) there exits a positive \(\delta_1 \) such that \(t \in (0, \delta_1) \),
\[
\limsup_{n \to \infty} \langle f(x_t) - x_t, j(x_n - x_t) \rangle \leq \frac{\varepsilon}{2}.
\] (3.3.16)

On the other hand, \(\{x_t\} \) converges strongly to \(q \), as \(t \to \infty \), the set \(\{x_t - x_n\} \) is bounded, and the duality map \(J \) is norm-to-norm uniformly continuous on bounded sets of uniformly smooth space \(E \); from \(x_t \to q \) as \(t \to 0 \), we get
\[
\|f(q) - q - (f(x_t) - x_t)\| \to 0 \text{ as } t \to 0,
\]
and
\[
\begin{align*}
\|\langle f(q) - q, j(x_n - q) \rangle - \langle f(x_t) - x_t, j(x_n - x_t) \rangle\| \\
= \|\langle f(q) - q, j(x_n - q) - j(x_n - x_t) \rangle + \langle f(q) - q - (f(x_t) - x_t), j(x_n - x_t) \rangle\| \\
\leq \|f(q) - q\|\|j(x_n - q) - j(x_n - x_t)\| \\
+ \|f(q) - q - (f(x_t) - x_t)\|\|j(x_n - x_t)\| \to 0 \text{ as } t \to 0
\end{align*}
\] (3.3.17)
Hence for the above \(\varepsilon > 0 \), there exists \(\delta_2 > 0 \) such that for all \(t \in (0, \delta_2) \), for all \(n \), we have

\[
\| (f(q) - q, j(x_n - q)) - (f(x_t) - x_t, j(x_n - x_t)) \| \leq \frac{\varepsilon}{2}.
\]

(3.3.18)

Therefore, we have

\[
\langle f(q) - q, j(x_n - q) \rangle \| \leq \langle f(x_t) - x_t, j(x_n - x_t) \rangle + \frac{\varepsilon}{2}.
\]

(3.3.19)

Taking \(\delta = \min\{\delta_1, \delta_2\} \), for all \(t \in (0, \delta) \), we have

\[
\limsup_{n \to \infty} \langle f(q) - q, j(x_n - q) \rangle \leq \limsup_{n \to \infty} \langle f(x_t) - x_t, j(x_n - x_t) \rangle + \frac{\varepsilon}{2} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

(3.3.20)

Since \(\varepsilon \) is arbitrary, we get the required inequality (3.3.9). Finally, we shall show that \(x_n \to q \) as \(n \to \infty \). We note that

\[
x_{n+1} - (\alpha_n f(x_n) + (1 - \alpha_n)q) = (x_{n+1} - q) - \alpha_n (f(x_n - q)).
\]

Using the inequality (2.2.1), we have,

\[
\|x_{n+1} - q\|^2 = \|x_{n+1} - (\alpha_n f(x_n) + (1 - \alpha_n)q) + \alpha_n (f(x_n - q))\|^2
\]

\[
\leq \|x_{n+1} - P(\alpha_n f(x_n) + (1 - \alpha_n)q)\|^2 + 2\alpha_n (f(x_n) - q, j(x_{n+1} - q))\|
\]

\[
\leq \|\alpha_n f(x_n) + (1 - \alpha_n)(\beta_n x_n + (1 + \beta_n)T x_n - \alpha_n f(x_n) + (1 - \alpha_n)q)\|^2
\]

\[
+ 2\alpha_n (f(x_n) - f(q), j(x_{n+1} - q))\| + 2\alpha_n (f(q) - q, j(x_{n+1} - q))\|
\]

\[
\leq (1 - \alpha_n)^2 \|x_n - q\|^2 + 2\alpha_n \|f(x_n) - f(q)\| \|x_{n+1} - q\|
\]

\[
+ 2\alpha_n (f(q) - q, j(x_{n+1} - q))\|
\]

\[
\leq (1 - \alpha_n)^2 \|x_n - q\|^2 + \alpha_n \|f(x_n) - f(q)\|^2 + \|x_{n+1} - q\|^2
\]

\[
+ 2\alpha_n (f(q) - q, j(x_{n+1} - q))\|
\]

Therefore we have

\[
(1 - \alpha_n)\|x_{n+1} - q\|^2 \leq (1 - 2\alpha_n + \alpha_n^2) \|x_n - q\|^2 + \alpha_n \beta \|x_n - q\|^2 + 2\alpha_n \langle f(q) - q, j(x_{n+1} - q) \rangle.
\]

Thus,

\[
\|x_{n+1} - q\|^2 \leq \left(1 - \frac{\beta^2}{1 - \alpha_n}\right) \|x_n - q\|^2 + \frac{\alpha_n^2}{1 - \alpha_n} \|x_n - q\|^2
\]

\[
+ \frac{2\alpha_n}{1 - \alpha_n} \langle f(q) - q, j(x_{n+1} - q) \rangle
\]

\[
\leq (1 - \gamma_n) \|x_n - q\|^2 + \lambda \gamma_n \alpha_n + \frac{2}{1 - \beta_n^2} \gamma_n \langle f(q) - q, j(x_{n+1} - q) \rangle,
\]

where \(\gamma_n = \frac{1 - \beta^2}{1 - \alpha_n} \) and \(\lambda \) is a constant such that \(\lambda > \frac{1}{1 - \beta_n} \|x_n - q\|^2 \). Hence

\[
\|x_{n+1} - q\|^2 \leq (1 - \gamma_n) \|x_n - q\|^2
\]
\[+ \gamma_n (\lambda \alpha_n + \frac{2}{1 - \beta_n^2} \gamma_n \langle f(q) - q, j(x_{n+1} - q) \rangle). \quad (3.3.21) \]

It is easily seen that \(\gamma_n \to 0, \sum_{n=1}^{\infty} \gamma_n = \infty \), and noting that

\[\lim_{n \to \infty} (\lambda \alpha_n + \frac{2}{1 - \beta_n^2} \gamma_n \langle f(q) - q, j(x_{n+1} - q) \rangle) \leq 0. \]

Applying Lemma 2.5 onto (3.3.21), we have \(\{x_n\} \) converges strongly to \(q \). The proof is complete.

If in Theorem 3.2, \(\beta_n = 0 \) for all \(n \geq 0 \), then the iteration (1.1.6) reduces to the iteration (1.1.5). Note that, the weakly inward conditions on the mapping \(T \) can be dropped. In fact, the following Corollary can be obtained from Theorem 3.2 immediately.

Corollary 3.3. [2, Theorem 3.4] Let \(E \) be a uniformly smooth Banach space, \(C \) is a nonempty closed convex subset of \(E \), let \(T : C \to E \) be a nonexpansive nonself-mapping satisfying the weakly inward conditions, and \(F(T) \neq \emptyset \). Let \(f : C \to C \) a fixed contractive mapping. The sequence \(\{x_n\} \) is defined by (1.1.5), where \(P \) is the sunny nonexpansive retraction of \(E \) onto \(C \), and \(\{\alpha_n\} \subset (0, 1) \), and satisfying the following conditions:

(i) \(\lim_{n \to \infty} \alpha_n = 0 \);
(ii) \(\sum_{n=0}^{\infty} \alpha_n = \infty \);
(iii) either \(\sum_{n=0}^{\infty} |\alpha_n - \alpha_{n-1}| < +\infty \) or \(\lim_{n \to \infty} (\alpha_{n+1}/\alpha_n) = 1 \).

Then as \(n \to \infty \), the sequence \(\{x_n\} \) converges strongly to a fixed point \(q \) of \(T \) such that \(q \) is the unique solution in \(F(T) \) to the following variational inequality:

\[\langle (f - I)q, j(q - u) \rangle \leq 0 \text{ for all } u \in F(T). \]

If in Theorem 3.2, \(T : C \to C \) is the nonexpansive mapping and \(\beta_n = 0 \) for all \(n \geq 0 \), then the iteration (1.1.6) reduces to the iteration (1.1.3). In fact, the following Corollary can be obtained from Theorem 3.2 immediately.

Corollary 3.4. [8, Theorem 4.2] Let \(E \) be a uniformly smooth Banach space, \(C \) is a nonempty closed convex subset of \(E \), let \(T : C \to C \) be a nonexpansive mapping with \(F(T) \neq \emptyset \). Let \(f : C \to C \) a fixed contractive mapping. The sequence \(\{x_n\} \) is defined by (1.1.3) and \(\{\alpha_n\} \subset (0, 1) \) satisfying the following conditions:

(i) \(\lim_{n \to \infty} \alpha_n = 0 \);
(ii) \(\sum_{n=0}^{\infty} \alpha_n = \infty \);
(iii) either \(\sum_{n=0}^{\infty} |\alpha_n - \alpha_{n-1}| < +\infty \) or \(\lim_{n \to \infty} (\alpha_{n+1}/\alpha_n) = 1 \).

Then as \(n \to \infty \), the sequence \(\{x_n\} \) converges strongly to a fixed point \(q \) of \(T \) such that \(q \) is the unique solution in \(F(T) \) to the following variational inequality:

\[\langle (f - I)q, j(q - u) \rangle \leq 0 \text{ for all } u \in F(T). \]
References

Received: September 29, 2007