A Common Fixed Point Theorem and its Application in Dynamic Programming

Jinsong Li
Department of Technology
Tieling Normal College
Tieling, Liaoning 112001, P. R. China
jinsong1972@sohu.com

Minjie Fu
Department of Mathematics
Liaoning Normal University
P. O. Box 200, Dalian, Liaoning 116029, P. R. China
fuminjie82520@126.com

Zeqing Liu
Department of Mathematics
Liaoning Normal University
P. O. Box 200, Dalian, Liaoning 116029, P. R. China
zeqingliu@sina.com.cn

Shin Min Kang
Department of Mathematics
The Research Institute of Natural Science
Gyeongsang National University
Jinju 660-701, Korea
smkang@nongae.gsu.ac.kr

Abstract
A common fixed point theorem for certain contractive type mappings is presented in this paper. As an application, the existence and uniqueness of common solution for a system of functional equations arising in dynamic programming is given. The results presented in this paper generalize some known results in the literature.
Mathematics Subject Classification: 49L20, 49L99, 54H25, 90C39

Keywords: Common fixed point, contractive type mappings, complete metric space, system of functional equations, dynamic programming

1 Introduction and Preliminaries

Let \(f, g \) and \(h \) be mappings from a metric space \((X, d)\) into itself, \(\mathbb{R} = (-\infty, +\infty) \), \(\mathbb{R}^+ = [0, +\infty) \) and
\[
\Phi = \{ W : \mathbb{R}^+ \to \mathbb{R}^+ \text{ is a continuous function such that } 0 < W(r) < r \text{ for all } r \in \mathbb{R}^+ \setminus \{0\} \}.
\]

The existence of common fixed points and solutions for several classes of contractive type mappings and functional equations and system of functional equations arising in dynamic programming, respectively, have been studied by many investigators, for example, see [1-19] and the references therein.

Ray [18] studied the existence of common fixed point for the following contractive type mappings:
\[
d(f x, g y) \leq d(h x, h y) - W(d(h x, h y)), \quad \forall x, y \in X. \tag{1.1}
\]

Liu [5] gave a sufficient condition which ensures the existence of common fixed point for the contractive type mappings:
\[
d(f x, g y) \leq \max\{d(h x, h y), d(h x, f x), d(h y, g y)\} - W(\max\{d(h x, h y), d(h x, f x), d(h y, g y)\}), \quad \forall x, y \in X. \tag{1.2}
\]

As suggested in Bellman and Lee [1], the basic form of the functional equations in dynamic programming is as follows:
\[
f(x) = \sup_{y \in S} H(x, y, f(T(x, y))), \quad \forall x \in D, \tag{1.3}
\]
where \(x \) and \(y \) denote the state and decision vectors, respectively, \(T \) denotes the transformation of the process and \(f(x) \) denotes the optimal return function with the initial state \(x \). The authors [2-4, 6-17, 19] studied the existence or uniqueness of solutions, common solutions, coincidence solutions, nonpositive solutions and nonnegative solutions for several classes of functional equations and systems of functional equations arising in dynamic programming by using various fixed point theorems, common fixed point theorems and coincidence point theorems, respectively.

The purpose of this paper is to establish a unique common fixed point theorem for four self mappings \(f, g, h \) and \(t \) on \(X \) which satisfy the condition of the type
\[
d(f x, g y) \tag{1.4}
\]
Our main result is as follows.

Theorem 2.1. Let \((X,d)\) be a complete metric space, \(f, g, h\) and \(t\) be four continuous mappings from \(X\) into itself satisfying \(ft = tf, gh = hg, f(X) \subseteq h(X)\) and \(g(X) \subseteq t(X)\). If there exists \(W \in \Phi\) satisfying (1.4), then \(f, g, h\) and \(t\) have a unique common fixed point in \(X\).

Proof. Let \(x_0\) be an arbitrary point in \(X\). Since \(f(X) \subseteq h(X)\) and \(g(X) \subseteq t(X)\), it follows that there exist two sequences \(\{y_n\}_{n \geq 1}\) and \(\{x_n\}_{n \geq 0}\) such that \(y_{2n+1} = fx_{2n} = hx_{2n+1}\) for \(n \geq 0\) and \(y_{2n} = gx_{2n-1} = tx_{2n}\) for \(n \geq 1\). Define \(d_n = d(y_n, y_{n+1})\) for \(n \geq 1\). We first show that

\[
d_{n+1} \leq d_n - W(d_n), \quad \forall n \geq 1. \quad (2.1)
\]

Let \(n \geq 1\). By (1.4) for \(x = x_{2n}\) and \(y = x_{2n+1}\), we have

\[
d_{2n+1} = d(fx_{2n}, gx_{2n+1})
\]

\[
\leq \max \left\{ d(fx_{2n}, tx_{2n}), d(gx_{2n+1}, hx_{2n+1}), d(hx_{2n+1}, tx_{2n}), \right. \\
\left. \frac{d(fx_{2n}, hx_{2n+1}) + d(gx_{2n+1}, tx_{2n})}{2}, \frac{d(fx_{2n}, tx_{2n})d(gx_{2n+1}, hx_{2n+1})}{1 + d(hx_{2n+1}, tx_{2n})}, \frac{d(fx_{2n}, hx_{2n+1})d(gx_{2n+1}, tx_{2n})}{1 + d(fx_{2n}, gx_{2n+1})}\right\}
\]

\[-W \left(\max \left\{ d(fx_{2n}, tx_{2n}), d(gx_{2n+1}, hx_{2n+1}), d(hx_{2n+1}, tx_{2n}), \right. \right. \\
\left. \left. \frac{d(fx_{2n}, hx_{2n+1}) + d(gx_{2n+1}, tx_{2n})}{2}, \frac{d(fx_{2n}, tx_{2n})d(gx_{2n+1}, hx_{2n+1})}{1 + d(hx_{2n+1}, tx_{2n})}, \frac{d(fx_{2n}, hx_{2n+1})d(gx_{2n+1}, tx_{2n})}{1 + d(fx_{2n}, gx_{2n+1})}\right\}\right)
\]

for all \(x, y \in X\), where \(W \in \Phi\). As an application, we prove the existence and uniqueness of common solutions for a class of system of functional equations arising in dynamic programming. The results presented in this paper extend and unify some results in [5] and [18].

2 A Common Fixed Point Theorem

Our main result is as follows.

Theorem 2.1. Let \((X,d)\) be a complete metric space, \(f, g, h\) and \(t\) be four continuous mappings from \(X\) into itself satisfying \(ft = tf, gh = hg, f(X) \subseteq h(X)\) and \(g(X) \subseteq t(X)\). If there exists \(W \in \Phi\) satisfying (1.4), then \(f, g, h\) and \(t\) have a unique common fixed point in \(X\).
\[\frac{1}{2}[d(fx_{2n}, hx_{2n+1}) + d(gx_{2n+1}, tx_{2n})], \quad \frac{d(fx_{2n}, tx_{2n})d(gx_{2n+1}, hx_{2n+1})}{1 + d(hx_{2n+1}, tx_{2n})}, \]
\[\leq \max \left\{ d_{2n}, d_{2n+1}, d_{2n}, \frac{1}{2}d(y_{2n+2}, y_{2n}), \frac{d_{2n}d_{2n+1}}{1 + d_{2n}}, 0, 0 \right\} \]
\[- W\left(\max \left\{ d_{2n}, d_{2n+1}, d_{2n}, \frac{1}{2}d(y_{2n+2}, y_{2n}), \frac{d_{2n}d_{2n+1}}{1 + d_{2n}}, 0, 0 \right\} \right), \]
which implies that
\[d_{2n+1} \leq \max\{d_{2n}, d_{2n+1}\} - W(\max\{d_{2n}, d_{2n+1}\}). \quad (2.2) \]

Suppose that \(d_{2n+1} > d_{2n} \) for some \(n \geq 1 \). It follows that \(d_{2n+1} = d_{2n+1} - W(d_{2n+1}) < d_{2n+1} \), which is a contradiction. From (2.2) we infer that \(d_{2n+1} \leq d_{2n} - W(d_{2n}) \) for all \(n \geq 1 \). Hence \(d_{2n+1} \leq d_{2n} \) for all \(n \geq 1 \). Similarly, we have \(d_{2n} \geq d_{2n-1} - W(d_{2n-1}) \) for \(n \geq 1 \). That is, (2.1) holds. Therefore the series of nonnegative terms \(\sum_{n=1}^{\infty} W(d_n) \) is convergent. Hence
\[\lim_{n \to \infty} W(d_n) = 0. \]

Since \(\{d_n\}_{n \geq 1} \) is a nonnegative decreasing sequence, it converges to some point \(p \). By the continuity of \(W \) we have
\[W(p) = \lim_{n \to \infty} W(d_n) = 0, \]
which means that \(p = 0 \). Hence \(\lim_{n \to \infty} d_n = 0. \)

In order to show that \(\{y_n\}_{n \geq 1} \) is a Cauchy sequence, it is sufficient to show that \(\{y_{2n}\}_{n \geq 1} \) is a Cauchy sequence. Suppose that \(\{y_{2n}\}_{n \geq 1} \) is not a Cauchy sequence. Thus there exists a positive number \(\epsilon \) such that for each even integer \(2k \), there are even integers \(2m(k) \) and \(2n(k) \) such that
\[d(y_{2m(k)}, y_{2n(k)}) > \epsilon, \quad 2m(k) > 2n(k) > 2k. \]
For each even integer \(2k \), let \(2m(k) \) be the least even integer exceeding \(2n(k) \) satisfying the above inequality, so that
\[d(y_{2m(k)-2}, y_{2n(k)}) \leq \epsilon, \quad d(y_{2m(k)}, y_{2n(k)}) > \epsilon. \quad (2.3) \]
It follows that for each even integer \(2k \),
\[d(y_{2m(k)}, y_{2n(k)}) \leq d(y_{2n(k)}, d_{2m(k)-2}) + d_{2m(k)-2} + d_{2m(k)-1}. \]
Using (2.3) and the above inequality we deduce that
\[
\lim_{k \to \infty} d(y_{2n(k)}, y_{2m(k)}) = \epsilon. \tag{2.4}
\]
By the triangle inequality we infer that for each even integer 2k
\[
|d(y_{2n(k)}, y_{2m(k)} - 1) - d(y_{2n(k)}, y_{2m(k)})| \leq d_{2m(k)} - 1,
\]
\[
|d(y_{2n(k)+1}, y_{2m(k)} - 1) - d(y_{2n(k)}, y_{2m(k)})| \leq d_{2m(k)} + d_{2n(k)}
\]
and
\[
|d(y_{2n(k)+1}, y_{2m(k)}) - d(y_{2m(k)}, y_{2n(k)})| \leq d_{2n(k)}.
\]
In view of (2.4) and the above inequalities we arrive at
\[
\epsilon = \lim_{k \to \infty} d(y_{2n(k)}, y_{2m(k)} - 1) = \lim_{k \to \infty} d(y_{2n(k)+1}, y_{2m(k)} - 1)
= \lim_{k \to \infty} d(y_{2n(k)+1}, y_{2m(k)}).
\]
By virtue of (1.4), we get that
\[
d(y_{2n(k)}, y_{2m(k)})
\leq d_{2n(k)} + d(f x_{2n(k)}, g x_{2m(k)} - 1)
\leq d_{2n(k)} + \max \left\{ d(f x_{2n(k)}, t x_{2n(k)}), d(g x_{2m(k)} - 1, h x_{2m(k)} - 1),
\right.
\begin{align*}
 & d(h x_{2m(k) - 1}, t x_{2n(k)}), \\
 & \frac{1}{2} \left[d(f x_{2n(k)}, h x_{2m(k) - 1}) + d(g x_{2m(k) - 1}, t x_{2n(k)}) \right],
\end{align*}
\begin{align*}
 & \frac{d(f x_{2n(k)}, t x_{2n(k)})d(g x_{2m(k) - 1}, h x_{2m(k) - 1})}{1 + d(h x_{2m(k) - 1}, t x_{2n(k)})},
\end{align*}
\begin{align*}
 & \frac{d(f x_{2n(k)}, h x_{2m(k) - 1})d(g x_{2m(k) - 1}, t x_{2n(k)})}{1 + d(f x_{2n(k)}, g x_{2m(k) - 1})},
\end{align*}
\begin{align*}
 & - W \left(\max \left\{ d(f x_{2n(k)}, t x_{2n(k)}), d(g x_{2m(k) - 1}, h x_{2m(k) - 1}),
\right. \right.
\begin{align*}
 & d(h x_{2m(k) - 1}, t x_{2n(k)}), \\
 & \frac{1}{2} \left[d(f x_{2n(k)}, h x_{2m(k) - 1}) + d(g x_{2m(k) - 1}, t x_{2n(k)}) \right],
\end{align*}
\begin{align*}
 & \frac{d(f x_{2n(k)}, t x_{2n(k)})d(g x_{2m(k) - 1}, h x_{2m(k) - 1})}{1 + d(h x_{2m(k) - 1}, t x_{2n(k)})},
\end{align*}
\begin{align*}
 & \frac{d(f x_{2n(k)}, h x_{2m(k) - 1})d(g x_{2m(k) - 1}, t x_{2n(k)})}{1 + d(f x_{2n(k)}, g x_{2m(k) - 1})},
\end{align*}
\begin{align*}
 & \bigg) \bigg). \nonumber
\end{align*}
\[
\frac{d(fx_{2n(k)}, hx_{2m(k)-1})d(gx_{2m(k)-1}, tx_{2n(k)})}{1 + d(fx_{2n(k)}, gx_{2m(k)-1})}
\]

\[
= \max \left\{ \frac{d(y_{2n(k)+1}, y_{2n(k)})}{2}, \frac{d(y_{2n(k)-1}, y_{2m(k)})}{d(y_{2m(k)-1}, y_{2n(k)})}, \frac{d(y_{2n(k)+1}, y_{2m(k)-1})d(y_{2m(k)}, y_{2n(k)})}{1 + d(y_{2m(k)-1}, y_{2n(k)})}, \frac{d(y_{2n(k)+1}, y_{2m(k)-1})d(y_{2m(k)}, y_{2n(k)})}{1 + d(y_{2n(k)+1}, y_{2m(k)})} \right\}
\]

\[-W\left(\max \left\{ \frac{\epsilon^2}{1 + \epsilon}, \frac{\epsilon^2}{1 + \epsilon} \right\} \right) - W\left(\max \left\{ \frac{\epsilon^2}{1 + \epsilon}, \frac{\epsilon^2}{1 + \epsilon} \right\} \right) \]

As \(k \to \infty \), we infer that

\[
\epsilon \leq \max \left\{ 0, 0, \epsilon, 0, \frac{\epsilon^2}{1 + \epsilon}, \frac{\epsilon^2}{1 + \epsilon} \right\} - W\left(\max \left\{ 0, 0, \epsilon, 0, \frac{\epsilon^2}{1 + \epsilon}, \frac{\epsilon^2}{1 + \epsilon} \right\} \right).
\]

which implies that \(W(\epsilon) \leq 0 \). This is a contradiction. Thus \(\{y_n\}_{n \geq 1} \) is a Cauchy sequence. Therefore \(\{y_n\}_{n \geq 1} \) converges to a point \(z \in X \) by completeness of \(X \). It follows that

\[
\lim_{n \to \infty} fx_{2n} = \lim_{n \to \infty} hx_{2n+1} = \lim_{n \to \infty} gx_{2n+1} = \lim_{n \to \infty} tx_{2n} = z.
\]

By the continuity of \(h, f, t \) and \(g \), and \(ft = tf, hg = gh \), we conclude that for any \(n \geq 0 \)

\[
d(tx_{2n}, ghx_{2n+1}) = d(ftx_{2n}, hgx_{2n+1})
\]
\[\leq \max \left\{ d(ftx_{2n}, ttx_{2n}), d(ghx_{2n+1}, hhx_{2n+1}), d(hhx_{2n+1}, ttx_{2n}), \right. \\
\frac{1}{2} \left[d(ftx_{2n}, hhx_{2n+1}) + d(ghx_{2n+1}, ttx_{2n}) \right], \]
\[\frac{d(ftx_{2n}, ttx_{2n})d(ghx_{2n+1}, hhx_{2n+1})}{1 + d(hhx_{2n+1}, ttx_{2n})}, \]
\[\left. \frac{d(ftx_{2n}, hhx_{2n+1})d(ghx_{2n+1}, ttx_{2n})}{1 + d(hhx_{2n+1}, ttx_{2n})} \right\} \]}
\[-W \left(\max \left\{ d(ftx_{2n}, ttx_{2n}), d(ghx_{2n+1}, hhx_{2n+1}), d(hhx_{2n+1}, ttx_{2n}), \right. \\
\frac{1}{2} \left[d(ftx_{2n}, hhx_{2n+1}) + d(ghx_{2n+1}, ttx_{2n}) \right], \]
\[\frac{d(ftx_{2n}, ttx_{2n})d(ghx_{2n+1}, hhx_{2n+1})}{1 + d(hhx_{2n+1}, ttx_{2n})}, \]
\[\left. \frac{d(ftx_{2n}, hhx_{2n+1})d(ghx_{2n+1}, ttx_{2n})}{1 + d(hhx_{2n+1}, ttx_{2n})} \right\}. \]

As \(n \to \infty \), we get that
\[d(tz, hz) \leq d(tz, hz) - w(d(tz, hz)), \]
which gives that \(tz = hz \). Note that
\[d(tfx_{2n}, hgx_{2n+1}) = d(ftx_{2n}, ghx_{2n+1}), \quad \forall n \geq 0. \]

As \(n \to \infty \), we gain immediately that \(d(fz, gz) = d(hz, tz) \). Hence \(fz = gz \).

It follows from (1.4)
\[d(fx_{2n}, hgx_{2n+1}) = d(fx_{2n}, ghx_{2n+1}) \]
\[\leq \max \left\{ d(fx_{2n}, tx_{2n}), d(ghx_{2n+1}, hhx_{2n+1}), d(hhx_{2n+1}, tx_{2n}), \right. \\
\frac{1}{2} \left[d(fx_{2n}, hhx_{2n+1}) + d(ghx_{2n+1}, tx_{2n}) \right], \]
\[\frac{d(fx_{2n}, tx_{2n})d(ghx_{2n+1}, hhx_{2n+1})}{1 + d(hhx_{2n+1}, tx_{2n})}, \]
\[\left. \frac{d(fx_{2n}, hhx_{2n+1})d(ghx_{2n+1}, tx_{2n})}{1 + d(hhx_{2n+1}, tx_{2n})} \right\}. \]
\[
\frac{d(fx_{2n}, hhx_{2n+1})d(ghx_{2n+1}, tx_{2n})}{1 + d(fx_{2n}, ghx_{2n+1})}
\]

\[-W\left(\max\left\{d(fx_{2n}, tx_{2n}), d(ghx_{2n+1}, hhx_{2n+1}), d(hhx_{2n+1}, tx_{2n})\right\}, \frac{1}{2}\left[d(fx_{2n}, hhx_{2n+1}) + d(ghx_{2n+1}, tx_{2n})\right], \frac{d(fx_{2n}, tx_{2n})d(ghx_{2n+1}, hhx_{2n+1})}{1 + d(hhx_{2n+1}, tx_{2n})}, \frac{d(fx_{2n}, hhx_{2n+1})d(ghx_{2n+1}, tx_{2n})}{1 + d(hhx_{2n+1}, tx_{2n})}, \frac{d(fx_{2n}, hhx_{2n+1})d(ghx_{2n+1}, tx_{2n})}{1 + d(fx_{2n}, ghx_{2n+1})}\right)\}
\]

\(\forall n \geq 0.\)

As \(n \to \infty\), we get that

\[d(z, hz) \leq \max\left\{0, 0, d(z, hz), d(z, hz), 0, \frac{d^2(z, hz)}{1 + d(z, hz)}, \frac{d^2(z, hz)}{1 + d(z, hz)}\right\}\]

\[-W\left(\max\left\{0, 0, d(z, hz), d(z, hz), 0, \frac{d^2(z, hz)}{1 + d(z, hz)}, \frac{d^2(z, hz)}{1 + d(z, hz)}\right\}\right)
\]

\[= d(z, hz) - W(d(z, hz)),\]

which implies that \(z = hz\).

Using (1.4), we infer that

\[d(ffx_{2n}, gx_{2n+1})\]

\[\leq \max\left\{d(ffx_{2n}, tfx_{2n}), d(gx_{2n+1}, hx_{2n+1}), d(hx_{2n+1}, tfx_{2n}), \frac{1}{2}\left[d(fx_{2n}, hx_{2n+1}) + d(gx_{2n+1}, tfx_{2n})\right], \frac{d(fx_{2n}, tfx_{2n})d(gx_{2n+1}, hx_{2n+1})}{1 + d(hx_{2n+1}, tfx_{2n})}, \frac{d(fx_{2n}, hx_{2n+1})d(gx_{2n+1}, tfx_{2n})}{1 + d(hx_{2n+1}, tfx_{2n})}, \frac{d(fx_{2n}, hx_{2n+1})d(gx_{2n+1}, tfx_{2n})}{1 + d(ffx_{2n}, gx_{2n+1})}\right\}\]

\[-W\left(\max\left\{d(ffx_{2n}, tfx_{2n}), d(gx_{2n+1}, hx_{2n+1}), d(hx_{2n+1}, tfx_{2n}), \frac{1}{2}\left[d(ffx_{2n}, hx_{2n+1}) + d(gx_{2n+1}, tfx_{2n})\right], \frac{d(ffx_{2n}, tfx_{2n})d(gx_{2n+1}, hx_{2n+1})}{1 + d(hx_{2n+1}, tfx_{2n})}, \frac{d(ffx_{2n}, hx_{2n+1})d(gx_{2n+1}, tfx_{2n})}{1 + d(ffx_{2n}, gx_{2n+1})}\right)\right].\]
Letting $n \to \infty$ in the above inequality, we get that
\[
d(fz, z) \leq \max \left\{ 0, 0, d(fz, z), d(fz, z), 0, \frac{d^2(fz, z)}{1 + d(fz, z)}, \frac{d^2(fz, z)}{1 + d(fz, z)} \right\}
\]
\[
-W\left(\max \left\{ 0, 0, d(fz, z), d(fz, z), 0, \frac{d^2(fz, z)}{1 + d(fz, z)}, \frac{d^2(fz, z)}{1 + d(fz, z)} \right\} \right)
\]
\[
= d(fz, z) - W(d(fz, z)),
\]
which means that $z = fz$. It follows that $z = fz = gz = tz = hz$. That is z is a common fixed point of f, g, h and t. If u is another common fixed point of f, g, h and t in X, it follow from (1.4) that
\[
d(z, u) = d(fz, gu) \leq d(z, u) - w(d(z, u)) < d(z, u),
\]
which is a contradiction. This completes the proof. □

As consequences of Theorem 2.1, we have the following results.

Corollary 2.2. Let (X, d) be a complete metric space. Let f, g, h and t be four continuous mappings from X into itself, $ft = tf$, $gh = hg$, $f(X) \subseteq h(X)$ and $g(X) \subseteq t(X)$. If there exists $W \in \Phi$ satisfying
\[
d(fx, gy) \leq d(hy, tx) - W(d(hy, tx)), \quad \forall x, y \in X,
\]
then f, g, h and t have a unique common fixed point in X.

Remark 2.3. Corollary 2.2 generalizes two results in [18].

Corollary 2.4. Let (X, d) be a complete metric space. Let f, g and h be three continuous mappings from X into itself, $fh = hf$, $gh = hg$ and $f(X) \cup g(X) \subseteq h(X)$. If there exists $W \in \Phi$ satisfying
\[
d(fx, gy)
\]
\[
\leq \max \left\{ d(hx, hy), d(fx, hx), d(gy, hy), \frac{1}{2}[d(fx, hy) + d(gy, hx)] \right\} - W\left(\max \left\{ d(hx, hy), d(fx, hx), d(hy, gy), \frac{1}{2}[d(fx, hy) + d(gy, hx)] \right\} \right)
\]
for all $x, y \in X$, then f, g and h have a unique common fixed point in X.

Remark 2.5. Corollary 2.4 is a generalization of the Theorem and Corollaries 1 and 2 in [5].
3 An Application

Let X and Y be Banach spaces, $S \subseteq X$ be the state space, $D \subseteq Y$ be the decision space and i_X be the identity mapping on X. $B(S)$ denotes the set of all bounded real-valued functions on S and $d(f, g) = \sup\{|f(x) - g(x)| : x \in S\}$. It is clear that $(B(S), d)$ is a complete metric space.

By means of Theorem 2.1, in this section we study the existence and uniqueness of common solution of the following system of functional equations arising in dynamic programming:

$$f_i(x) = \sup_{y \in D} \left\{ u(x, y) + H_i(x, y, f_i(T(x, y))) \right\}, \quad \forall x \in S, i \in \{1, 2, 3, 4\}, \quad (3.1)$$

where $u : S \times D \to \mathbb{R}$, $T : S \times D \to S$ and $H_i : S \times D \times \mathbb{R} \to \mathbb{R}$ for $i \in \{1, 2, 3, 4\}$.

Theorem 3.1. Suppose that the following conditions are satisfied:

(a1) u and H_i are bounded for $i \in \{1, 2, 3, 4\}$;

(a2) There exist $W \in \Phi$ and the mappings A_1, A_2, A_3 and A_4 defined by

$$A_i g_i(x) = \sup_{y \in D} \left\{ u(x, y) + H_i(x, y, g_i(T(x, y))) \right\}, \quad \forall x \in S, g_i \in B(S), i \in \{1, 2, 3, 4\};$$

satisfying

$$|H_1(x, y, g(t)) - H_2(x, y, h(t))| \leq \max \left\{ d(A_1 g, A_4 g), d(A_2 h, A_3 h), d(A_3 h, A_4 g), \right\}$$

$$\frac{1}{2} \left[d(A_1 g, A_3 h) + d(A_2 h, A_4 g) \right] \cdot \frac{d(A_1 g, A_4 g)d(A_2 h, A_3 h)}{1 + d(A_3 h, A_4 g)},$$

$$d(A_1 g, A_3 h)d(A_2 h, A_4 g) \cdot \frac{d(A_1 g, A_3 h)d(A_2 h, A_4 g)}{1 + d(A_1 g, A_3 h)} \cdot \frac{1}{1 + d(A_3 h, A_4 g)},$$

$$-W \left(\max \left\{ d(A_1 g, A_4 g), d(A_2 h, A_3 h), d(A_3 h, A_4 g), \right\} \right) \leq \frac{1}{2} \left[d(A_1 g, A_3 h) + d(A_2 h, A_4 g) \right] \cdot \frac{d(A_1 g, A_4 g)d(A_2 h, A_3 h)}{1 + d(A_3 h, A_4 g)},$$

$$d(A_1 g, A_3 h)d(A_2 h, A_4 g) \cdot \frac{d(A_1 g, A_3 h)d(A_2 h, A_4 g)}{1 + d(A_1 g, A_4 h)} \cdot \frac{1}{1 + d(A_3 h, A_4 g)},$$

for all $(x, y) \in S \times D$, $g, h \in B(S)$, $t \in S$;

(a3) $A_1(B(S)) \subseteq A_3(B(S))$, $A_2(B(S)) \subseteq A_4(B(S))$;

(a4) There exists some $A_i \in \{A_1, A_2, A_3, A_4\}$ such that for any sequence

$$\{h_n\}_{n \geq 1} \subseteq B(S) \text{ and } h \in B(S),$$

$$\lim_{n \to \infty} \sup_{x \in S} |h_n(x) - h(x)| = 0 \Rightarrow \lim_{n \to \infty} \sup_{x \in S} |A_i h_n(x) - A_i h(x)| = 0;$$
(a5) \(A_1A_4 = A_4A_1, \ A_2A_3 = A_3A_2. \)

Then the system of functional equations (3.1) has a unique common solution in \(B(S) \).

Proof. It follows from (a1)-(a4) that \(A_1, \ A_2, \ A_3 \) and \(A_4 \) are continuous self mappings of \(B(S) \). For any \(g, h \in B(S), \ x \in S \) and \(\varepsilon > 0 \), there exist \(y, z \in D \) such that

\[
A_1g(x) < u(x, y) + H_1(x, y, g(T(x, y))) + \varepsilon, \tag{3.2}
\]

\[
A_2h(x) < u(x, z) + H_2(x, z, h(T(x, z))) + \varepsilon. \tag{3.3}
\]

Note that

\[
A_1g(x) \geq u(x, z) + H_1(x, z, g(T(x, z))), \tag{3.4}
\]

\[
A_2h(x) \geq u(x, y) + H_2(x, y, h(T(x, y))). \tag{3.5}
\]

It follows from (3.2), (3.5) and (a2) that

\[
A_1g(x) - A_2h(x) \tag{3.6}
\]

\[
< H_1(x, y, g(T(x, y))) - H_2(x, y, h(T(x, y))) + \varepsilon
\]

\[
\leq \max\left\{ d(A_1g, A_4g), d(A_2h, A_3h), d(A_3h, A_4g), \right\}
\]

\[
\frac{1}{2} \left[d(A_1g, A_3h) + d(A_2h, A_4g) \right] \frac{d(A_1g, A_4g)d(A_2h, A_3h)}{1 + d(A_3h, A_4g)},
\]

\[
\frac{d(A_1g, A_3h)d(A_2h, A_4g)}{1 + d(A_3h, A_4g)}, \frac{d(A_1g, A_3h)d(A_2h, A_4g)}{1 + d(A_1g, A_2h)} \right\}
\]

\[- W \left(\max\left\{ d(A_1g, A_4g), d(A_2h, A_3h), d(A_3h, A_4g), \right\} \right)
\]

\[
\frac{1}{2} \left[d(A_1g, A_3h) + d(A_2h, A_4g) \right] \frac{d(A_1g, A_4g)d(A_2h, A_3h)}{1 + d(A_3h, A_4g)}
\]

\[
\frac{d(A_1g, A_3h)d(A_2h, A_4g)}{1 + d(A_3h, A_4g)}, \frac{d(A_1g, A_3h)d(A_2h, A_4g)}{1 + d(A_1g, A_2h)} \right\} + \varepsilon.
\]

In view of (3.3), (3.4) and (a2) that

\[
A_1g(x) - A_2h(x) \tag{3.7}
\]

\[
> H_1(x, z, g(T(x, z))) - H_2(x, z, h(T(x, z))) - \varepsilon
\]

\[
> H_1(x, z, g(T(x, z))) - H_2(x, z, h(T(x, z))) - \varepsilon.
\]
\[\geq - \max \left\{ d(A_{1g}, A_{4g}), d(A_{2h}, A_{3h}), d(A_{3h}, A_{4g}), \right\} \]
\[\frac{1}{2} \left[d(A_{1g}, A_{3h}) + d(A_{2h}, A_{4g}) \right], \frac{d(A_{1g}, A_{4g})d(A_{2h}, A_{3h})}{1 + d(A_{3h}, A_{4g})}, \]
\[\frac{d(A_{1g}, A_{3h})d(A_{2h}, A_{4g})}{1 + d(A_{3h}, A_{4g})}, \frac{d(A_{1g}, A_{3h})d(A_{2h}, A_{4g})}{1 + d(A_{1g}, A_{2h})} \} \]
\[+ W \left(\max \left\{ d(A_{1g}, A_{4g}), d(A_{2h}, A_{3h}), d(A_{3h}, A_{4g}), \right\} \right) + \varepsilon. \]

(3.6) and (3.7) ensure that
\[d(A_{1g}, A_{2h}) \]
\[= \sup_{x \in S} |A_{1g}(x) - A_{2h}(x)| \]
\[\leq \max \left\{ d(A_{1g}, A_{4g}), d(A_{2h}, A_{3h}), d(A_{3h}, A_{4g}), \right\} \]
\[\frac{1}{2} \left[d(A_{1g}, A_{3h}) + d(A_{2h}, A_{4g}) \right], \frac{d(A_{1g}, A_{4g})d(A_{2h}, A_{3h})}{1 + d(A_{3h}, A_{4g})}, \]
\[\frac{d(A_{1g}, A_{3h})d(A_{2h}, A_{4g})}{1 + d(A_{3h}, A_{4g})}, \frac{d(A_{1g}, A_{3h})d(A_{2h}, A_{4g})}{1 + d(A_{1g}, A_{2h})} \} \]
\[- W \left(\max \left\{ d(A_{1g}, A_{4g}), d(A_{2h}, A_{3h}), d(A_{3h}, A_{4g}), \right\} \right) + \varepsilon. \]

Letting \(\varepsilon \to 0 \) in (3.8), we gain that
\[d(A_{1g}, A_{2h}) \]
\[= \sup_{x \in S} |A_{1g}(x) - A_{2h}(x)| \]
\[\leq \max \left\{ d(A_{1g}, A_{4g}), d(A_{2h}, A_{3h}), d(A_{3h}, A_{4g}), \right\} \]
\[\frac{1}{2} \left[d(A_{1g}, A_{3h}) + d(A_{2h}, A_{4g}) \right], \frac{d(A_{1g}, A_{4g})d(A_{2h}, A_{3h})}{1 + d(A_{3h}, A_{4g})}, \]
\[\frac{d(A_{1g}, A_{3h})d(A_{2h}, A_{4g})}{1 + d(A_{3h}, A_{4g})}, \frac{d(A_{1g}, A_{3h})d(A_{2h}, A_{4g})}{1 + d(A_{1g}, A_{2h})} \}, \]
A common fixed point theorem and its application

\[\frac{d(A_1g, A_3h)d(A_2h, A_4g)}{1 + d(A_3h, A_4g)}, \frac{d(A_1g, A_3h)d(A_2h, A_4g)}{1 + d(A_1g, A_2h)} \}

\[-W \left(\max \left\{ \frac{d(A_1g, A_4g), d(A_2h, A_3h), d(A_3h, A_4g)}{1 + d(A_3h, A_4g)}, \frac{d(A_1g, A_4g)d(A_2h, A_3h)}{1 + d(A_3h, A_4g)}, \frac{d(A_1g, A_3h)d(A_2h, A_4g)}{1 + d(A_1g, A_2h)} \right\} \) \]

It follows from (a5) and (3.9) that Theorem 2.1 implies that \(A_1, A_2, A_3 \) and \(A_4 \) have a unique common fixed point \(v \in B(S) \), that is, \(v(x) \) is a unique common solution of the system of functional equations (3.1). This completes the proof.

Acknowledgement. This work was supported by the Science Research Foundation of Educational Department of Liaoning Province (20060467).

References

Received: September 27, 2007