Fixed Point Solutions of Variational Inequalities for Asymptotically Pseudocontractive Mappings in Banach Spaces

Ying Chen

Department of Computer Science
Tianjin Polytechnic University
Tianjin, China 300160

Huimin He and Rudong Chen

Department of Mathematics
Tianjin Polytechnic University
Tianjin, China 300160
hehuimin20012000@yahoo.com.cn, tjcrd@yahoo.com.cn

Abstract. Let E be a real reflexive Banach space with a uniformly Gâteaux differentiable norm, and which possesses uniform normal structure with coefficient $N(E)$, K a nonempty closed convex and bounded subset of E. $T : K \rightarrow K$ an asymptotically pseudocontractive mapping with sequence $\{k_n\} \subset [1, \infty)$, uniformly asymptotically regular and uniformly L-Lipschitzian. Let $f : K \rightarrow K$ be a fixed contraction. Let $\{t_n\} \subset (0, 1)$ be such that $\lim_{n \to \infty} t_n = 1$, $y_0 \in K \{t_n\}, \{k_n\}$ satisfy some appropriate conditions, the two iterative process as follows:

$$x_n = (1 - \frac{t_n}{k_n})f(x_n) + \frac{t_n}{k_n}T^n x_n,$$

$$y_{n+1} = (1 - \frac{t_n}{k_n})f(y_n) + \frac{t_n}{k_n}T^n y_n.$$

for all $n \geq 0$. converge strongly to some fixed point p of T, which is the unique solution of variational inequality:

$$\langle (I - f)p, j(p - x^*) \rangle \leq 0 \ \forall x^* \in F(T).$$

This work is partially supported by the National Science Foundation of China, Grant 10471033.
The results presented in this paper extend and improve the corresponding results of Naseer Shahzad and Aniefiok Udomene [Nonlinear Analysis 64(2006)558-567].

Keywords: Fixed point; asymptotically pseudocontractive mappings; strong convergence; reflexive; uniformly asymptotically regular

1. Introduction

Let E be a real normed linear space with dual E^*. We denote by J the normalized duality mapping from E to E^* defined by

$$J(x) = \{f \in E^*, \langle x, f \rangle = \|x\| \|f\|, \|f\| = \|x\|\}, \forall x \in E,$$

where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pair. It is well known that if E^* is strictly convex then J is single-valued. In the sequel, we shall denote the single-valued duality mapping by j.

Let K be a nonempty closed convex and bounded subset of a real Banach space E and $T : K \to K$ be a nonexpansive mapping (i.e., $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in K$). It is said to be asymptotically nonexpansive if there exists a sequence $\{k_n\}$ with $k_n \geq 1$ and $\lim_{n \to \infty} k_n = 1$ such that $\|T^n x - T^n y\| \leq k_n \|x - y\|$ for all integers $n \geq 0$ and all $x, y \in K$. T is said to be asymptotically pseudocontractive if there exists a sequence $\{k_n\}$ with $k_n \geq 1, \lim_{n \to \infty} k_n = 1$ and $j(x - y) \in J(x - y)$ such that the inequality

$$(T^n x - T^n y, j(x - y)) \leq k_n \|x - y\|^2$$

holds for all $x, y \in K$ and for all integers $n \geq 0$. It is trivial to see from the above definitions that every nonexpansive mapping is asymptotically nonexpansive and every asymptotically nonexpansive mapping is asymptotically pseudocontractive. The converses do not hold. A mapping T is called uniformly asymptotically regular if $\|T^{n+1} x - T^n x\| \to 0$ as $n \to \infty$ for all $x \in K$. T is called uniformly L-Lipschitzian if there exists $L > 0$ such that $\|T^n x - T^n y\| \leq L \|x - y\|, \forall x, y \in K$ and for all integers $n \geq 0$. We denote by $F(T)$ the set of fixed points of T; i.e. $F(T) = \{x \in C : x = T x\}$.

If \prod_K denotes the set of all contractions on K, he proved the following theorems.

Theorem 1.1. (Xu[12]Theorem4.1). Let E be a uniformly smooth Banach space, K a nonempty closed convex subset of E, and $T : K \to K$ be a nonexpansive mapping with $F(T) \neq \emptyset$, and $f \in \prod_K$. Then the path $\{x_t\}$ defined
by
\[x_t = tf(x_t) + (1 - t)Tx_t, \quad t \in (0, 1) \]
converges strongly to a point in \(F(T) \). If we define \(Q : \prod_K \to F(T) \) by
\[Q(f) = \lim_{t \to 0} x_t, \]
then \(Q(f) \) solves the variational inequality:
\[\langle (I - f)Q(f), j(Q(f) - x) \rangle \leq 0, \quad \forall x \in F(T). \]

Theorem 1.2. (Xu[12] Theorem 4.2). Let \(E \) be a uniformly smooth Banach space, \(K \) a nonempty closed convex subset of \(E \), and \(T : K \to K \) be a nonexpansive mapping with \(F(T) \neq \emptyset \), and \(f \in \prod_K \). Assume that \(\{\alpha_n\} \subset (0, 1) \) satisfies the following conditions:

(i) \(\lim_{n \to \infty} \alpha_n = 0; \)

(ii) \(\sum_{n=0}^{\infty} \alpha_n = \infty; \)

(iii) either \(\sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty \) or \(\lim_{n \to \infty} (\alpha_{n+1}/\alpha_n) = 1. \)

Then the sequence \(\{x_n\} \) generated by
\[x_0 \in K, \quad x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n)Tx_n, \quad n = 0, 1, 2... \]
converges strongly to a fixed point of \(T \).

Very recently, Naseer Shahzad and Aniefiok Udomene [10] extended the results of H.K.Xu [12] from nonexpansive to asymptotically nonexpansive, and they proved the following Theorems:

Theorem 1.3. ([10] Theorem 3.1). Let \(E \) be a real Banach space with a uniformly Gâteaux differentiable norm possessing uniform normal structure, \(K \) a nonempty closed convex and bounded subset of \(E \), \(T : K \to K \) an asymptotically nonexpansive mapping with sequence \(\{k_n\} \subset [1, \infty) \), and \(f : K \to K \) a fixed contraction with constant \(\alpha \in [0, 1) \). Let \(\{t_n\} \subset (0, \frac{1-\alpha}{k_n-\alpha}) \) be such that \(\lim_{n \to \infty} t_n = 1 \) and \(\lim_{n \to \infty} \frac{k_n-1}{k_n-t_n} = 0 \). Then,

(i) for each integer \(n \geq 0 \), there is a unique \(x_n \in K \) such that
\[x_n = (1 - \frac{t_n}{k_n})f(x_n) + \frac{t_n}{k_n}Tx_n \tag{1.1} \]
and, if in addition, \(\lim_{n \to \infty} \|x_n - Tx_n\| = 0 \), then,

(ii) The sequence \(\{x_n\} \) converges strongly to some fixed point \(p \) of \(T \), which is the unique solution of variational inequality:
\[\langle (I - f)p, j(p - x) \rangle \leq 0 \quad \forall x \in F(T). \]

Theorem 1.4. ([10] Theorem 3.3). Let \(E \) be a real Banach space with a uniformly Gâteaux differentiable norm possessing uniform normal structure, \(K \) a nonempty closed convex and bounded subset of \(E \), \(T : K \to K \) an asymptotically nonexpansive mapping with sequence \(\{k_n\} \subset [1, \infty) \), and \(f : K \to K \) a fixed contraction with constant \(\alpha \in [0, 1) \). Let \(\{t_n\} \subset (0, \xi_n) \) be such that \(\lim_{n \to \infty} t_n = 1 \), \(\sum_{n=0}^{\infty} t_n(1 - t_n) = \infty \) and \(\lim_{n \to \infty} \frac{k_n}{k_n-t_n} = 0 \), where \(\xi_n = ... \)
min\(\left\{ \frac{(1-\alpha)k_n}{k_n-\alpha}, \frac{1}{k_n} \right\} \). For an arbitrary \(y_0 \in K\) let the sequence \(\{y_n\}\) be iteratively defined by (1.2)

\[
y_{n+1} = (1 - \frac{t_n}{k_n})f(y_n) + \frac{t_n}{k_n}Ty_n \tag{1.2}
\]

Then,

(i) for each integer \(n \geq 0\), there is a unique \(x_n \in K\) such that the equality (1.1) holds. and, if in addition, \(\lim_{n \to \infty} \|x_n - Tx_n\| = 0, \lim_{n \to \infty} \|y_n - Ty_n\| = 0\). then,

(ii) The sequence \(\{y_n\}\) converges strongly to some fixed point \(p\) of \(T\), which is the unique solution of variational inequality:

\[
\langle (I - f)p, j(p - x^*) \rangle \leq 0 \quad \forall x^* \in F(T).
\]

The main aim of this paper is to obtain fixed point solutions of variational inequalities for an asymptotically pseudocontractive mapping defined on a real reflexive Banach space with uniformly Gâteaux differentiable norm possessing uniform normal structure. We proved under the appropriate conditions on \(K\), \(T\) and \(\{t_n\} \subset (0, 1)\) that the sequence iteratively defined by (1.1) and (1.2) converges strongly to some fixed point \(p\) of \(T\), which is the unique solution of variational inequality:

\[
\langle (I - f)p, j(p - x^*) \rangle \leq 0 \quad \forall x^* \in F(T).
\]

Our results extend Theorem 3.1 and Theorem 3.3 of Naseer Shahzad and Aniefiok Udomene[10] to more general class of asymptotically pseudocontractive mappings and to the much more general class of Banach spaces considered here.

2. Preliminaries

Throughout this paper, we denote by \(\mathbb{N}\) and \(\mathbb{R}_+\) the sets of positive integers and nonnegative real numbers, respectively. Recall that a self-mapping \(f : K \to K\) is a fixed contraction on \(K\) if there exists a constant \(\alpha \in (0, 1)\) such that

\[
\|f(x) - f(y)\| \leq \alpha \|x - y\|, \quad x, y \in K.
\]

Let \(E\) be a real normed linear space with \(\dim E \geq 2\). The norm of \(E\) is said to be uniformly Gâteaux differentiable if for each \(y \in S := \{x \in E : \|x\| = 1\}\), the limit

\[
\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}
\]

is attained uniformly for \(x \in S\). The modulus of convexity of \(E\) is the function \(\delta_E : (0, 2] \to [0, 1]\) defined by

\[
\delta_E(\epsilon) = \inf \left\{ 1 - \frac{\|x + y\|}{2} : \|x\| = \|y\| = 1; \epsilon = \|x - y\| \right\}.
\]
Asymptotically pseudocontractive mappings

E is uniformly convex if and only if $\delta_E(\epsilon) > 0, \forall \epsilon \in (0, 2]$. Typical examples of spaces which are uniformly convex are the Lebesgue L_p, the sequence l_p, and the Sobolev W^m_p spaces for $1 < p < \infty$.

Let K be a nonempty bounded closed convex subset of a real Banach space E and let $d(K) := \sup\{\|x - y\| : x, y \in K\}$ be the diameter of K. For each $x \in K$, let $r(x, K) := \sup\{\|x - y\| : y \in K\}$ and let $r(K) := \inf\{r(x, K) : x \in K\}$, the Chebyshev radius of K relative to itself. The normal structure coefficient of E is defined (e.g.,[3]) as the number

$$N(E) := \inf\{d(K)/r(K) : K \text{ is a bounded closed convex subset of } E \text{ with } d(K) > 0\}.$$

A space E such that $N(E) > 1$ is said to have uniformly normal structure. It is known that a space with a uniformly normal structure is reflexive and that all uniformly convex Banach spaces have uniformly normal structure(e.g.,[1]).

Recall that (see e.g.,[11]) a Banach limit LIM is a bounded linear functional on l^∞ such that

$$\|LIM\| = 1, \lim inf t_n \leq LIM_n t_n \leq \lim sup t_n,$$

and $LIM t_n = LIM t_{n+1}$ for all $t_n \in l^\infty$.

In the sequel, we shall make use of the following lemmas.

Lemma 2.1. ([5]) Suppose E is a Banach space with uniformly normal structure. K is a nonempty closed convex subset of E, and $T : K \to K$ is uniformly L-Lipschitzian with $L < N(E)^{1/2}$. Suppose also there exists a nonempty closed convex subset C of K with the following property:

$$\text{(P)}: \text{ } x \in C \text{ implies } \omega_w(x) \subset C,$$

where $\omega_w(x)$ is the weak w-limit set of T at x, i.e., the set $\{y \in E : y = \text{weak} - \lim j T^n y, \text{for some } n_j \to \infty\}$. Then T has a fixed point in C.

Lemma 2.2. Let E be a real normed linear space. Then the following inequality holds:

$$\|x + y\|^2 \leq \|x\|^2 + 2\langle y, j(x + y) \rangle, \forall x, y \in E, \forall j(x + y) \in J(x + y).$$

Lemma 2.3. ([Xu/7,12,13]) Let $\{a_n\}$ be a sequence of nonnegative real numbers satisfying the following relation:

$$a_{n+1} \leq (1 - \gamma_n)a_n + \beta_n \gamma_n, \text{ } n \geq 0,$$

where,

1. $\{\gamma_n\} \subset (0, 1), \sum_{n=0}^\infty \gamma_n = \infty;$
2. $\lim sup_{n \to \infty} \beta_n \leq 0; (n \geq 0).$

Then, $a_n \to 0$ as $n \to \infty$.

3. Main Results

Theorem 3.1. Let E be a real reflexive Banach space with a uniformly Gâteaux differentiable norm, and which possesses uniform normal structure with coefficient $N(E)$, K a nonempty closed convex and bounded subset of E. $T : K \to K$ an asymptotically pseudocontractive mapping with sequence $\{k_n\} \subset [1, \infty)$, uniformly asymptotically regular and uniformly L-Lipschitzian. Let $f : K \to K$ be a fixed contraction. Let $\{t_n\} \subset (0, \frac{(1-\alpha)k_n}{k_n-\alpha})$ be such that $\lim_{n \to \infty} t_n = 1$ and

$$\lim_{n \to \infty} \frac{k_n-1}{k_n-t_n} = 0, \quad \text{and} \quad L < N(E)^{1/2}$$

(i) for each integer $n \geq 0$, there is a unique $x_n \in K$ such that

$$x_n = (1 - \frac{t_n}{k_n})f(x_n) + \frac{t_n}{k_n}T^n x_n$$

and $\lim_{n \to \infty} \|x_n - Tx_n\| = 0$;

(ii) if in addition,

$$\|x_n - T^m x\|^2 \leq \langle x_n - T^m x, j(x_n - x) \rangle, \quad (3.1), \forall m, n \geq 1, \forall x \in K$$

then, The sequence $\{x_n\}$ converges strongly to some fixed point p of T, which is the unique solution of variational inequality:

$$\langle (I - f)p, j(p - x^*) \rangle \leq 0 \quad \forall x^* \in F(T).$$

Proof. (i) Clearly, by the conditions on $\{t_n\}$, for each integer $n \geq 0$, we have that $\alpha_n := 1 - t_n/k_n \in (0, 1)$ and the mapping $T_n(x) := \alpha_n f(x) + (1 - \alpha_n)T^n x$ is continuous and strongly pseudocontractive. Indeed,

$$\langle T_n x - T_n y, j(x - y) \rangle$$

$$= \langle (1 - \alpha_n)(T(t_n)^n x - T(t_n)^n y) + \alpha_n (f(x) - f(y)), j(x - y) \rangle$$

$$\leq (1 - \alpha_n) k_n \|x - y\|^2 + \alpha_n \|x - y\|^2$$

$$= ((1 - \alpha_n) k_n + \alpha_n \|x - y\|^2$$

Since $(1 - \alpha_n) k_n + \alpha_n \alpha \in (0, 1)$ for all $n \geq 0$.

Therefore, by Theorem 5 of [8], T_n has unique fixed point (say) $x_n \in K$. This means that the equation

$$x_n = \alpha_n f(x_n) + (1 - \alpha_n)T(t_n)^n x_n$$

has a unique solution for each integer $n \geq 0$.

Moreover, since K is bounded we have that

$$\|x_n - T^n x_n\| = \alpha_n \|f(x_n) - T^n x_n\| \to 0 \text{ as } n \to \infty. \quad (3.2)$$

Thus

$$\|x_n - Tx_n\| = \|\alpha_n (f(x_n) - Tx_n) + (1 - \alpha_n)(T^n x_n - Tx_n)\|$$

$$\leq \alpha_n \|f(x_n) - Tx_n\| + (1 - \alpha_n) \|T^n x_n - T^n x_n + T^{n+1} x_n - Tx_n\|$$

$$\leq \alpha_n \|f(x_n) - Tx_n\| + (1 - \alpha_n) \|T^n x_n - T^{n+1} x_n\|$$

$$+ (1 - \alpha_n) L \|T^n x_n - x_n\|$$
Therefore, from (3.2) and the uniformly asymptotic regularity of T we get that
\[\|x_n - T x_n\| \to 0 \text{ as } n \to \infty. \] (3.3)

(ii) Define the mapping $\phi : K \to \mathbb{R}_+$ by $\phi(x) := \text{LIM}_n \|x_n - x\|^2 \text{ for all } x \in K$.

Furthermore, since E is reflexive and ϕ is continuous, convex and $\phi(z) \to \infty$ as $\|z\| \to \infty$, ϕ attains its infimum over K (see, e.g., [2,5,11]). Hence $C := \{x \in K : \phi(x) = \min_{z \in K} \phi(z)\}$ is nonempty. It is also closed and convex. Now we show that C has property (P). Let $y_0 \in C$ and let $x := w - \text{lim}_{m \to \infty} T^{m} y_0$. For any $t > 0$, belong to the weak w-limit set $\omega_w(x^*)$ of T at y_0. Then from the weak-lower-semi continuity of ϕ, and the fact that $\lim_{n \to \infty} \|x_n - T^n x_n\| = 0$, using condition (3.1), we have the following estimates:

\[
\phi(x) \leq \lim_{j \to \infty} \inf \phi((T)^m y_0) \leq \lim_{m \to \infty} \sup \phi(T^m y_0) \leq \lim_{m \to \infty} \text{sup} (\text{LIM}_n \|x_n - T^m y_0\|^2)
\]

\[
\leq \lim_{m \to \infty} \text{sup} (\text{LIM}_n \langle x_n - T^m y_0, j(x_n - y_0) \rangle)
\]

\[
= \lim_{m \to \infty} \text{sup} (\text{LIM}_n \langle x_n - T x_n + (T x_n - T^2 x_n) + \ldots + (T^m x_n - T^m y_0), j(x_n - y_0) \rangle)
\]

\[
\leq \lim_{m \to \infty} \text{sup} (\text{LIM}_n \|x_n - T x_n\| + \|T x_n - T^2 x_n\| + \ldots + \|T^{m-1} x_n - T^m x_n\| d + \text{LIM}_n k_m \|x_n - y_0\|^2)
\]

\[
\leq \lim_{m \to \infty} \text{sup} (\text{LIM}_n \|x_n - T x_n\| + L \|x_n - T x_n\| + \ldots + L \|x_n - T x_n\| d + \text{LIM}_n k_m \|x_n - y_0\|^2)
\]

\[
\leq \text{LIM}_n \|x_n - y_0\|^2 = \phi(y_0) = \min_{z \in K} \phi(z).
\]

where $d = \text{diam} K$. Thus we have $x \in C$, i.e., $\omega_w(y_0) \subseteq C$ and hence C has property (P). Since E is uniformly convex and has uniformly normal structure and since $L < N(E)^{1/2}$, it follows from Lemma 2.1 that T has a fixed point (say) $P \in F(T) \cap C$. and so $F(T) \neq \emptyset$. Now for any $x \in F(T)$ the asymptotically pseudocontractivity of T gives the following estimates:

\[
\langle x_n - T^n x_n, j(x_n - x^*) \rangle = \langle x_n - x^*, j(x_n - x) \rangle + \langle x^* - T^n x_n, j(x_n - x^*) \rangle
\]

\[
\geq \|x_n - x^*\|^2 - k_n \|x_n - x^*\|^2
\]

\[
\geq -(k_n - 1)d^2
\]

(3.4)

Moreover, from (1.1) we have that
\[x_n - T^n x_n = \frac{1}{t_n}(k_n - t_n)(f(x_n) - x_n) \] (3.5)

and from (3.4) and (3.5) we get that
\[
\text{LIM}_n \langle x_n - f(x_n), j(x_n - x^*) \rangle \leq \text{LIM}_n t_n \frac{k_n - 1}{k_n - t_n} d^2 \to 0 \text{ as } n \to \infty \text{ (by hypothesis)}.
\] (3.6)

In particular,
\[\text{LIM}_n \langle x_n - f(x_n), j(x_n - p) \rangle \leq 0.
\] (3.7)
Let \(s \in (0, 1] \). Then, by Lemma 2.2 we get that
\[
\| x_n - p - s(f(x_n) - p) \|^2 \\
\leq \| x_n - p \|^2 + 2\langle -s(f(x_n) - p), j(x_n - p - s(f(x_n) - p)) \rangle \\
= \| x_n - p \|^2 - 2s\langle f(x_n) - p, j(x_n - p) \rangle \\
- 2s\langle f(x_n) - p, j(x_n - p - s(f(x_n) - p)) - j(x_n - p) \rangle.
\]
Let \(\varepsilon > 0 \) be arbitrary. Then since \(j \) is norm-to-weak* uniformly continuous on bounded subsets of \(E \), there exists \(\delta > 0 \) such that for all \(s \in (0, \delta) \) we have
\[
LIM_n \langle f(x_n) - p, j(x_n - p) \rangle \\
\leq \frac{1}{2s}[LIM_n \| x_n - p \|^2 - LIM_n \| x_n - p - s(f(x_n) - p) \|^2] + \varepsilon < \varepsilon,
\]
since \(p \in C \), and is a minimizer of \(\phi \) over \(K \). Now, since \(\varepsilon \) is arbitrary this implies that
\[
LIM_n \langle f(x_n) - p, j(x_n - p) \rangle \leq 0 \tag{3.8}
\]
Combining inequalities (3.7) and (3.8) we get
\[
LIM_n \langle x_n - p, j(x_n - p) \rangle = LIM_n \| x_n - p \|^2 \leq 0.
\]
Therefore, there is a subsequence \(\{ x_{n_j} \} \) of \(\{ x_n \} \) which converges strongly to \(p \).

Thus, it follows from inequality (3.6) and norm to weak* uniformly continuity of \(j \) that
\[
\langle (I - f)p, j(p - x^*) \rangle = \lim \langle x_{n_j} - f(x_{n_j}), j(x_{n_j} - x^*) \rangle \leq 0.
\]
Now, suppose there exists another subsequence \(\{ x_{n_k} \} \) of \(\{ x_n \} \) which converges strongly to \(q \). Then since \(\lim \| x_n - T x_n \| = 0 \) for each \(t \in \mathbb{R}^+ \), we have that \(q \) is a fixed point of \(T \).

Similarly, we also can show
\[
\langle (I - f)q, j(q - x^*) \rangle = \lim \langle x_{n_k} - f(x_{n_k}), j(x_{n_k} - x^*) \rangle \leq 0.
\]
Replace \(x^* \) with \(q \) to obtain
\[
\langle (I - f)p, j(p - q) \rangle \leq 0.
\]
Replace \(x^* \) with \(p \) to obtain
\[
\langle (I - f)q, j(q - p) \rangle \leq 0.
\]
Adding the above two inequalities, we get
\[
(1 - \alpha) \| q - p \|^2 \leq \langle (I - f)q - (I - f)p, j(q - p) \rangle \leq 0.
\]
Thus, \(q = p \). Therefore, \(\{ x_n \} \) converges strongly to \(p \). The proof is completed.

\[\square \]

Theorem 3.2. Let \(E \) be a real reflexive Banach space with a uniformly Gâteaux differentiable norm, and which possesses uniform normal structure with coefficient \(N(E) \), \(K \) a nonempty closed convex and bounded subset of \(E \). \(T : K \rightarrow K \) an asymptotically pseudocontractive mapping with sequence \(\{ k_n \} \subset [1, \infty) \), uniformly asymptotically regular and uniformly \(L \)-Lipschitzian. Let \(f : K \rightarrow K \)
be a fixed contraction. Let \(\{t_n\} \subset (0, \xi_n) \), \((2\alpha)^{1/2} < L \neq 1, \alpha \in (0, \frac{1}{2})\) be such that \(\lim_{n \to \infty} t_n = 1 \) and \(\lim_{n \to \infty} \frac{k_n - 1}{k_n - t_n} = 0 \), and \(L < N(E)^{1/2} \), where \(\xi_n = \min \left\{ \frac{(1-\alpha)k_n}{k_n - \alpha}, \frac{k_n(1-2\alpha)}{L^2 - 2\alpha} \right\} \). Suppose that \(\|x_n - T^m x\|^2 \leq \langle x_n - T^m x, j(x_n - x) \rangle \), and \(\lim_{n \to \infty} \|y_n - Ty_n\| = 0 \). For an arbitrary \(y_0 \in K \). Then the iterative sequence \(\{y_n\} \) defined by (1.2) i.e.,

\[
y_{n+1} = (1 - \frac{t_n}{k_n}) f(y_n) + \frac{t_n}{k_n} T^m y_n
\]

converges strongly to some fixed point \(p \) of \(T \), which is the unique solution of variational inequality:

\[
\langle (I - f)p, j(p - x^*) \rangle \leq 0 \quad \forall x^* \in F(T).
\]

Proof. Let \(n \geq m \). Then from (1.1),

\[
x_m - y_n = (1 - \frac{t_m}{k_m})(f(x_m) - y_n) + \frac{t_m}{k_m}(T^m x_m - y_n).
\]

Setting \(\alpha_n := 1 - \frac{t_m}{k_m} \), we have the following estimate:

\[
\|x_m - y_n\|^2 = \langle x_m - y_n, j(x_m - y_n) \rangle
\]

\[
= \langle \alpha_m (f(x_m) - y_n) + (1 - \alpha_m)(T^m x_m - y_n), j(x_m - y_n) \rangle
\]

\[
= (1 - \alpha_m)\langle T^m x_m - T^m y_n + T^m y_n - y_n, j(x_m - y_n) \rangle
\]

\[
+ \alpha_m \langle f(x_m) - x_m + x_m - y_n, j(x_m - y_n) \rangle
\]

\[
\leq [\alpha_m + k_m(1 - \alpha_m)]\|x_m - y_n\|^2 + (1 - \alpha_m)\|T^m y_n - y_n\|\|x_m - y_n\|
\]

\[
+ \alpha_m \langle f(x_m) - x_m, j(x_m - y_n) \rangle
\]

Since \(K \) is bounded, for some constant \(M > 0 \), it follows that

\[
\lim_{n \to \infty} \sup_{m \to \infty} \langle f(x_m) - x_m, j(y_n - x_m) \rangle \leq \frac{t_m}{k_m} \frac{k_m - 1}{k_m - t_m} M
\]

\[
+ \lim_{n \to \infty} \sup_{m \to \infty} \frac{1 - \alpha_m}{\alpha_m} \|T^m y_n - y_n\| M,
\]

so that

\[
\lim_{n \to \infty} \sup_{m \to \infty} \langle f(x_m) - x_m, j(y_n - x_m) \rangle \leq \lim_{n \to \infty} \sup_{m \to \infty} \frac{t_m}{k_m} \frac{k_m - 1}{k_m - t_m} M.
\]

By Theorem 3.1 \(x_m \to p \in F(T) \), which is the unique solution of variational inequality:

\[
\langle (I - f)p, j(p - x^*) \rangle \leq 0 \quad \forall x^* \in F(T).
\]

Since \(j \) is norm to weak* uniformly continuous on bounded sets in Banach space \(E \) with uniformly Gâteaux differentiable norm, Then taking limit as \(m \to \infty \), we obtain that

\[
\lim_{n \to \infty} \sup_{m \to \infty} \langle f(p) - p, j(y_n - p) \rangle \leq 0
\]

(3.9)
Now from the iterative process (1.2), we estimate as follows:
\[
\|y_{n+1} - p\|^2 = \| (1 - \alpha_n) (T^n y_n - p) + \alpha_n (f(y_n) - p) \|^2 \\
\leq (1 - \alpha_n)^2 \| T^n y_n - p \|^2 + 2 \alpha_n \langle f(y_n) - p, j(y_{n+1} - p) \rangle \\
\leq (1 - \alpha_n)^2 L^2 \| y_n - p \|^2 + 2 \alpha_n \| y_n - p \| \| y_{n+1} - p \| \\
+ 2 \alpha_n \langle f(p) - p, j(y_{n+1} - p) \rangle \\
\leq (1 - \alpha_n)^2 L^2 \| y_n - p \|^2 + 2 \alpha_n \| y_n - p \| \| y_{n+1} - p \| \\
2 \alpha_n \langle f(p) - p, j(y_{n+1} - p) \rangle \\
\leq (1 - \alpha_n)^2 L^2 \| y_n - p \|^2 + \alpha_n (\| y_n - p \|^2 + \| y_{n+1} - p \|^2) \\
2 \alpha_n \langle f(p) - p, j(y_{n+1} - p) \rangle
\]
So that
\[
\|y_{n+1} - p\|^2 \leq \frac{(1 - \alpha_n)^2 L^2 + \alpha_n}{1 - \alpha_n} \| y_n - p \|^2 + \frac{2 \alpha_n}{1 - \alpha_n} \langle f(p) - p, j(y_{n+1} - p) \rangle \\
= (1 - \frac{1 - (1 - \alpha_n) L^2 - 2 \alpha_n}{1 - \alpha_n}) \| y_n - p \|^2 + \frac{2 \alpha_n}{1 - \alpha_n} \langle f(p) - p, j(y_{n+1} - p) \rangle \\
\leq (1 - \frac{1 - (1 - \alpha_n) L^2 - 2 \alpha_n}{1 - \alpha_n}) \| y_n - p \|^2 + \frac{2 \alpha_n}{1 - \alpha_n} \langle f(p) - p, j(y_{n+1} - p) \rangle
\]
Hence,
\[
\|y_{n+1} - p\|^2 \leq (1 - \gamma_n) \| y_n - p \|^2 + \beta_n \gamma_n \tag{3.10}
\]
where \(\gamma_n = \frac{1 - (1 - \alpha_n) L^2 - 2 \alpha_n}{1 - \alpha_n} \) and \(\beta_n = \frac{2 \alpha_n}{1 - \alpha_n} \langle f(p) - p, j(y_{n+1} - p) \rangle \).
By the condition on \(L \) and \(t_n \) and inequality (3.9), we obtain that
\[
\gamma_n \subset (0, 1), \quad \sum_{n=0}^{\infty} \gamma_n = \infty, \quad \limsup_{n \to \infty} \beta_n \leq 0
\]
Now we apply Lemma2.3 to (3.10), we have that
\[
\lim_{n \to \infty} \| y_n - p \|^2 = 0.
\]
The proof is completed. \(\square \)

Remark 3.3. Theorem3.1 and Theorem3.2 generalize and improve Theorem3.1 and Theorem3.3 of Naseer Shahzad and Aniefiok Udomene[10] in the following ways:

1. The asymptotically nonexpansive mappings is extended to asymptotically pseudocontractive mappings.
2. \(\lim_{n \to \infty} \|x_n - T x_n\| = 0 \) is the result of Theorem3.1 and Theorem3.2 in this paper, but it is assumption in Theorem3.1 and Theorem3.3 of Naseer Shahzad and Aniefiok Udomene[10].

References

Received: May 29, 2007