Fuzzy Congruences on Fuzzy Algebras

Olympia Louskou-Bozapalidou

Posidonos 7, Nea Krini
55132 Thessaloniki, Greece

Abstract

A notion of congruence on fuzzy algebras is introduced and the isomorphism theorem is established.

1 Introduction

A basic problem in fuzzifying algebras is to find out a notion of congruence so that the Isomorphism Theorem in classical Universal Algebra is valid.

It is the scope of this short paper to introduce such an appropriate notion.

We start with the definition of a non-deterministic (ND) algebra.

A ranked alphabet is a pair (Γ, rank) consisting of a finite set Γ equipped with a function $\text{rank}: \Gamma \rightarrow \mathbb{N}$ (natural numbers). The set $\Gamma_k = \text{rank}^{-1}(k)$, $k \in \mathbb{N}$ is the set of functional symbols of rank k.

A non-deterministic Γ-algebra is a structure $A = (A, \alpha)$ where A is a set (the carrier of A) and

$$\alpha = (\alpha_f : A^k \rightarrow \mathcal{P}(A))_{f \in \Gamma_k, k \geq 0}$$

is a set of multifunctions called structural operations of A.

An equivalence \sim on A is a congruence on A whenever for all $q_i, q'_i (1 \leq i \leq k)$ and $f \in \Gamma_k$,

$$q_1 \sim q'_1, \ldots, q_k \sim q'_k \quad \text{implies} \quad \alpha_f(q_1, \ldots, q_k) \cap [q] \neq \emptyset \quad \text{iff} \quad \alpha_f(q'_1, \ldots, q'_k) \cap [q] \neq \emptyset$$

for all \sim-classes $[q] \in A/\sim$.

The quotient set A/\sim is converted into a non-deterministic Γ-algebra by defining its structural operations

$$(\alpha_\sim)_f : (A/\sim)^k \rightarrow \mathcal{P}(A/\sim), \quad f \in \Gamma_k, k \geq 0$$

by the formula

$$(\alpha_\sim)_f([q_1], \ldots, [q_k]) = \{[q]/\alpha_f(q_1, \ldots, q_k) \cap [q] \neq \emptyset\}.$$

The definition is clearly independent from the representatives used. It is the above notion of congruence we are going to fuzzify.

Throughout this note \triangle denotes a t-norm distributive over a t-conorm ∇ on $[0,1]$ (cf. [2]). For an arbitrary index set I and any family $a_i \in [0,1]$ for $i \in I$ we set

$$\nabla a_i = \nabla a_i$$

doing the supremum running over all finite subsets I' of I. Obviously $a \triangle (\nabla a_i) = \nabla a \triangle a_i$.

2 Fuzzy Congruences

A fuzzy Γ-algebra is a pair $A = (A, \alpha)$ formed by a set A and a family of structural operations

$$\alpha = (\alpha_f : A^k \rightarrow \text{Fuzzy}(A))_{f \in \Gamma, k \geq 0}$$

where $\text{Fuzzy}(A)$ denotes the set of all fuzzy subsets of A.

We extend α_f into a function

$$\overline{\alpha}_f : \text{Fuzzy}(A)^k \rightarrow \text{Fuzzy}(A)$$

by setting

$$\overline{\alpha}_f(\varphi_1, ..., \varphi_k) = \nabla_{q_1, ..., q_k \in A} \varphi_1(q_1) \triangle ... \triangle \varphi_k(q_k) \triangle \alpha_f(q_1, ..., q_k).$$

The underlying non deterministic Γ-algebra $U(A) = (A, U(\alpha))$ is given by

$$U(\alpha)_f(q_1, ..., q_k) = \text{supp} \alpha_f(q_1, ..., q_k)$$

$\text{supp}(\varphi)$ standing for the support of the fuzzy set $\varphi : A \rightarrow [0,1]$,

$$\text{supp}(\varphi) = \{ q / q \in A \, , \, \varphi(q) \neq 0 \}.$$

Given fuzzy Γ-algebras $\mathcal{A} = (A, \alpha)$ and $\mathcal{B} = (B, \beta)$ any function $h : A \rightarrow B$ commuting with structural operations

$$\overline{h}(\alpha_f(q_1, ..., q_k)) = \beta_f(h(q_1), ..., h(q_k))$$

is called a morphism of fuzzy Γ-algebras.

Here $\overline{h} : \text{Fuzzy}(A) \rightarrow \text{Fuzzy}(B)$ is the linear extension of h, i.e.

$$\overline{h}(\varphi) = \nabla_{q \in A} \varphi(q) \triangle h(q).$$
An equivalence relation \(\sim \) on the set \(A \) is a \textit{fuzzy congruence} on \(A \), if
\[
q_1 \sim q'_1, \ldots, q_k \sim q'_k \quad \text{and} \quad f \in \Gamma_k, \ k \geq 1
\]
implies
\[
\bigwedge_{r \in [q]} \alpha_f(q_1, \ldots, q_k)(r) = \bigwedge_{r' \in [q]} \alpha_f(q'_1, \ldots, q'_k)(r')
\]
for any \(\sim \)-class \([q] \in A/\sim \).

The quotient set \(A/\sim \) can be converted into a fuzzy \(\Gamma \)-algebra if the structural operation
\[
(\alpha_\sim)_f : \left(A/\sim \right)^k \to \text{Fuzzy}(A/\sim), \ f \in \Gamma_k, \ k \geq 0
\]
is defined by
\[
(\alpha_\sim)_f([q_1], \ldots, [q_k])([q]) = \bigwedge_{r \in [q]} \alpha_f(q_1, \ldots, q_k)(r).
\]
This formula is consistent by the definition of fuzzy congruence. Moreover the canonical function
\[
h_\sim : A \to A/\sim, \ h_\sim(q) = [q]
\]
is a morphism of fuzzy \(\Gamma \)-algebras since for all \(q_1, \ldots, q_k \in A \) and \(f \in \Gamma_k, \ k \geq 0 \) we have
\[
\overline{T}_\sim(\alpha_f(q_1, \ldots, q_k))([q]) = \bigwedge_{r \in [q]} \alpha_f(q_1, \ldots, q_k)(r)
\]
for all \([q] \in A/\sim \). Thus
\[
\overline{T}_\sim(\alpha_f(q_1, \ldots, q_k)) = (\alpha_\sim)_f(h_\sim(q_1), \ldots, h_\sim(q_k)).
\]

\textbf{Fact.} \textit{If} \(\sim \) is a fuzzy congruence on \(\mathcal{A} = (A, \alpha) \text{ then } \sim \) is a congruence on its underlying non-deterministic \(\Gamma \)-algebra \(U(\mathcal{A}) = (A, U(\alpha)) \).

For this, we have to show that for any \(\sim \)-class \([q] \), it holds
\[
\text{supp } \alpha_f(q_1, \ldots, q_k) \cap [q] \neq \emptyset \iff \text{supp } \alpha_f(q'_1, \ldots, q'_k) \cap [q] \neq \emptyset
\]
provided that \(q_i \sim q'_i \ (1 \leq k \leq k) \) and \(f \in \Gamma_k, \ k \geq 1 \).
Indeed, if \(r \in [q] \) is such that \(\alpha_f(q_1, \ldots, q_k)(r) \neq 0 \), then

\[
\nabla_{r' \in [q]} \alpha_f(q'_1, \ldots, q'_k)(r') = \nabla_{r \in [q]} \alpha_f(q_1, \ldots, q_k)(r) \neq 0
\]

so that for some \(r' \in [q] \) we have \(\alpha_f(q'_1, \ldots, q'_k)(r') \neq 0 \), as wanted. \(\square \)

Our next task will be to establish the well known, in Universal Algebra, Isomorphism Theorem (cf. [1]).

Theorem 1. Let \(h : A \to B \) be an epimorphism of fuzzy \(\Gamma \)-algebras. Then the kernel \(\sim_h \) of \(h \) defined by

\[
q_1, q_2 \in A, \quad q_1 \sim_h q_2 \text{ iff } h(q_1) = h(q_2)
\]

is a fuzzy congruence on \(A \).

Moreover

\[
A / \sim_h \cong B.
\]

Proof. Assume that

\[
q_1 \sim_h q'_1, \ldots, q_k \sim_h q'_k
\]

that is

\[
h(q_1) = h(q'_1), \ldots, h(q_k) = h(q'_k).
\]

Then

\[
\overline{h}(\alpha_f(q_1, \ldots, q_k)) = \beta_f(h(q_1), \ldots, h(q_k))
\]

\[
= \beta_f(h(q'_1), \ldots, h(q'_k))
\]

\[
= \overline{h}(\alpha_f(q'_1, \ldots, q'_k)).
\]

Thus, for every \(\sim_h \)-class \([q]\) we have

\[
\overline{h}(\alpha_f(q_1, \ldots, q_k))(\overline{[q]}) = \overline{h}(\alpha_f(q'_1, \ldots, q'_k))(\overline{[q]})
\]

or

\[
\nabla_{h(r) = [q]} \alpha_f(q_1, \ldots, q_k)(r) = \nabla_{h(r') = [q]} \alpha_f(q'_1, \ldots, q'_k)(r')
\]

or

\[
\nabla_{r \in [q]} \alpha_f(q_1, \ldots, q_k)(r) = \nabla_{r' \in [q]} \alpha_f(q'_1, \ldots, q'_k)(r')
\]

or
and thus \(\sim_h \) is a fuzzy congruence.

Now the function

\[
h_1 : A / \sim_h \to B, \quad h_1([q]) = h(q)
\]

is clearly a well defined bijection. It is also a morphism of fuzzy algebras. Indeed we have

\[
\overline{h}_1(\alpha_{\sim_h} f([q_1], ..., [q_k]))(b) = \bigtriangledown_{h_1([q])=b} (\alpha_{\sim_h} f([q_1], ..., [q_k])([q]) \\
\overset{(*)}{=} \bigtriangledown_{h(r)=b} \alpha_f(q_1, ..., q_k)(r) \\
= \bigtriangledown h(\alpha_f(q_1, ..., q_k)) \\
= \beta_f(h(q_1), ..., h(q_k)) \\
= \beta_f(h_1([q_1]), ..., h_1([q_k]))
\]

where (\(* \)) holds because \(h_1 \) is a bijection.

The proof of our theorem is completed.

\[\square \]

Corollary 1. Let \(h : A \to B \) be an epimorphism of non-deterministic \(\Gamma \)-algebras. Then \(\sim_h \) is a congruence on \(A \) and moreover

\[
A / \sim_h \cong B.
\]

References

Received: July 13, 2006