Harmonic Morphisms from
Conformally Flat Spaces

Ye Pingkai and Mo Xiaohuan

Department of Mathematics, Lishui University
Lishui 323000, P.R. China

and

LMAM
School of Mathematical Sciences, Peking University
Beijing 100871, P.R. China
e-mail: moxh@pku.edu.cn

Abstract

In this note we give a method to construct non-trivial harmonic morphisms via conformal change of the metric of the domain generalizing a theorem previously only known in the case of start manifold to be an open subset of \(\mathbb{C}^2 \). As its application, we manufacture harmonic morphisms from conformally flat spaces.

Keywords: horizontally conformal map, harmonic morphism, conformally flat space

Mathematics Subject Classification: 53C12, 53C43, 57R25

1 Preliminaries

Harmonic morphisms between Riemannian manifolds are mappings, which preserve solutions of Laplace’s equation. They form a special class of harmonic maps, namely those that are horizontally conformal.

Call a smooth map \(\phi : (M, g) \to (N, h) \) between Riemannian manifolds is horizontally (weakly) conformal if for any point \(x \in M \) which is not contained in the critical set \(C_\phi = \{ x \in M \mid d\phi_x = 0 \} \) of \(\phi \), the restriction of \(d\phi_x \) to the orthogonal complement

\[
\mathcal{H}_x = \{ X \in T_xM \mid g(X, Y) = 0 \text{ for all } Y \in \text{Ker } d\phi_x \}
\]

This work is supported by the National Natural Science Foundation of China (10171002)
of $\text{Ker } d\phi_x$ is surjective and conformal onto the tangent space $T_{\phi(x)}N$.

Recall that a smooth map $f : M \to N$ between Riemannian manifold is harmonic if and only if it has vanishing tension field, equivalently, it is a critical point of its energy functional [1].

A smooth map $f : M \to N$ between Riemannian manifold is called a harmonic morphism if for any harmonic function $\psi : U \to \mathbb{R}$ defined on an open subset U of N with $f^{-1}(U)$ non-empty, $\psi \circ f : f^{-1}(U) \to \mathbb{R}$ is a harmonic function. The reader is referred to [2] for a detailed account of harmonic morphisms. Harmonic morphisms can be characterized as follows:

Theorem 1.1 ([2, 3]) A map $\phi : M \to N$ between Riemannian manifolds is a harmonic morphism if and only if it is a horizontally (weakly) conformal harmonic map.

2 Harmonic morphisms with respect to a conformally altered metric

In this section we extract a sufficient condition for $\varphi : (M^{2n}, e^{2n}g) \to (N^2, h)$ to be harmonic.

Recall that an almost Hermitian manifold (M, g, J) with Kähler form ω, is said to be cosymplectic if $d^*\omega = 0$ or equivalently, $\text{div} J = 0$.

Theorem 2.1. Assume that (M^{2n}, g, J) is a cosymplectic manifold and that η is a real valued function defined in M^{2n}. If φ is a holomorphic map from M^{2n} into some Riemann surface (N^2, h, J^N) satisfying $d\varphi(\text{grad} \eta) = 0$, then $\varphi : (M^{2n}, e^{2n}g) \to (N^2, h)$ is a harmonic morphism.

Proof. The well-known result by Lichnerowicz tells us that holomorphic map from a cosymplectic manifold to a $(1, 2)$-symplectic manifold is harmonic [5]. Note that an almost Hermitian manifold with Kähler form ω, is said to be $(1, 2)$-symplectic if the $(1, 2)$-part of $d\omega$ vanishes, and any Riemann surface is automatically $(1, 2)$-symplectic.

Recall from the Cauchy-Riemann equations that any holomorphic map from an almost Hermitian manifold to a Riemann surface is horizontally weakly conformal. Combining this with Lichnerowicz’s result and Fuglede-Ishihara’ characterization [2, 3], we obtain that a holomorphic map φ from cosymplectic manifold (M^{2n}, g, J) to Riemann surface (N^2, h, J^N) is a harmonic morphism. Setting $\tilde{g} = e^{2n}g$. It is easy to verify that $\varphi : (M^{2n}, \tilde{g}) \to (N^2, h)$ is horizontally weakly conformal. Moreover, by Theorem 5.1 of [8], $\varphi : (M^{2n}, \tilde{g}) \to$
(N^2, h) is harmonic if and only if \(\text{grad} \left[(e^{-\eta})^{n-2} \right] \) is vertical on \(M \setminus C_\varphi\) where \(\text{grad}\) denotes the gradient of function. This is equivalent to \(d\varphi(\text{grad}\eta) = 0\). On the other hand, if \(x\) is a interior point of \(C_\varphi\), then there is an open subset \(U\) of \(M\), such that \(x \in U \subset C_\varphi\), and \(\tau(\varphi)(x) = \text{Trace}_\tilde{g} \nabla d\varphi(x) = 0\) where \(\tau(\varphi)\) is the tension field with respect to \(\tilde{g}\). Suppose that \(x\) is a condensation point of \(C_\varphi\). Then there exists a sequence \(x_j\) \((j = 1, 2, \cdots)\) on \(M \setminus C_\varphi\) such that \(\lim_{j \to +\infty} x_j = x\). Because \(\tau(\varphi)\) is a smooth field along \(\varphi\), we get

\[0 = \lim \tau(\varphi)(x_j) = \tau(\varphi)(x)\]

To sum up, we have \(\tau(\varphi) = 0\), hence, \(\varphi\) is harmonic if \(d\varphi(\text{grad}\eta) = 0\). Therefore \(\varphi\) is a harmonic morphism by Fuglede-Ishihara’ result [2, 3]. \(\square\)

Remark 2.2 Theorem 2.1 is a natural extension of Theorem 3.1 of [10].

3 Harmonic morphisms from conformly flat spaces

Two Riemannian metrics \(g\) and \(\bar{g}\) on \(M\) are said to be **conformally equivalent**, if there exists a function \(\psi\) on \(M\) such that \(\bar{g} = e^{2\psi} g\). A map \(\varphi : (M, g) \to (N, h)\) between Riemannian manifolds is said to be **conformal** if there exists a function \(\psi\) on \(M\) such that \(\varphi^* h = e^{2\psi} g\). Two Riemannian manifolds \((M, g)\) and \((N, h)\) are said to be **conformally diffeomorphic**, if there exists a conformal diffeomorphism \(\varphi : (M, g) \to (N, h)\). An \(n\)-dimensional Riemannian manifold \((M, g)\) is called a **conformal flat space** if for any point of \(M\) there is a neighborhood which is conformally diffeomorphic to the Euclidean space \(R^n\).

We shall construct a harmonic morphism from \(\mathbb{R}^{2m}\), with a suitable conformally flat metric, to \(\mathbb{R}^2\). Let \(k_1, \cdots, k_m\) be non-negative integers which are not all zero, and let \(\varphi : \mathbb{R}^{2m} \to \mathbb{R}^2\) be the polynomial map, homogeneous of degree \(k_1 + \cdots + k_m\), defined in complex coordinates by

\[
\varphi(z) = z_1^{k_1} z_2^{k_2} \cdots z_m^{k_m} \quad (3.1)
\]

\((z = (z_1, \cdots, z_m) \in \mathbb{C} \times \cdots \times \mathbb{C} = \mathbb{R}^{2m})\)

For any \(i\), \(\frac{\partial \varphi}{\partial \bar{z}_i} = 0\) implies that \(\varphi\) is holomorphic.

Consider real valued function in \(\mathbb{C}^m\). Then

\[
\text{grad}\eta = \Sigma_i \left(\frac{\partial \eta}{\partial \bar{z}_i} \frac{\partial}{\partial \bar{z}_i} + \frac{\partial \eta}{\partial z_i} \frac{\partial}{\partial z_i} \right).
\]
Note that \(\varphi \) is holomorphic,
\[
d\varphi(\text{grad} \eta) = \sum_i \left(\frac{\partial \eta}{\partial z_i} \frac{\partial \varphi}{\partial \bar{z}_i} + \frac{\partial \eta}{\partial \bar{z}_i} \frac{\partial \varphi}{\partial z_i} \right)
\]
\[
= \sum_i \frac{\partial \eta}{\partial z_i} \frac{\partial \eta}{\partial z_i}
\]
\[
= \left(\prod_{i=1}^m z_i^{k_i-1} \right) \left(\sum_{j=1}^m k_j z_1 \cdots \hat{z}_j \cdots z_m \frac{\partial \eta}{\partial \bar{z}_j} \right).
\]
Thus the equation \(d\varphi(\text{grad} \eta) = 0 \) is equivalent to
\[
\left(\prod_{i=1}^m z_i^{k_i-1} \right) \left(\sum_{j=1}^m k_j z_1 \cdots \hat{z}_j \cdots z_m \frac{\partial \eta}{\partial \bar{z}_j} \right) = 0.
\]
A solution to this equation is given by
\[
\eta(z) = \begin{cases}
\sum_{i=1}^{m/2} (k_{2i} |z_{2i-1}|^2 - k_{2i-1} |z_{2i}|^2) & \text{if } m \text{ is even} \\
2k_3 |z_1|^2 - \frac{k_1}{2} (k_3 |z_2|^2 + k_2 |z_3|^2) + \sum_{i=2}^{(m-1)/2} (k_{2i+1} |z_{2i}|^2 - k_{2i} |z_{2i+1}|^2) & \text{if } m \text{ is odd.}
\end{cases} \tag{3.2}
\]
In fact, when \(m \) is even, then
\[
\eta(z_1, \cdots, z_m) = \sum_{i=1}^{m/2} (k_{2i} z_{2i-1} \bar{z}_{2i-1} - k_{2i-1} z_{2i} \bar{z}_{2i}).
\]
It follows that
\[
\frac{\partial \eta}{\partial \bar{z}_{2i-1}} = k_{2i} z_{2i-1}, \quad \frac{\partial \eta}{\partial z_{2i}} = -k_{2i-1} \bar{z}_{2i}.
\]
Thus we have
\[
\sum_{j=1}^m k_j z_1 \cdots \hat{z}_j \cdots z_m \frac{\partial \eta}{\partial \bar{z}_j} = \sum_{j=1}^{m/2} k_{2j} z_1 \cdots \hat{z}_{2j-1} \cdots z_m \frac{\partial \eta}{\partial \bar{z}_{2j-1}} + \sum_{j=1}^{m/2} k_{2j-1} z_1 \cdots \hat{z}_{2j-1} \cdots z_m \frac{\partial \eta}{\partial \bar{z}_{2j}}
\]
\[
= \sum_{j=1}^{m/2} k_{2j} z_1 \cdots \hat{z}_{2j-1} \cdots z_m (-k_{2j-1} z_{2j}) + \sum_{j=1}^{m/2} k_{2j-1} z_1 \cdots \hat{z}_{2j-1} \cdots z_m (k_{2j} z_{2j-1})
\]
\[
= -\sum_{j=1}^{m/2} k_{2j} k_{2j-1} \prod_{i=1}^m z_i + \sum_{j=1}^{m/2} k_{2j} k_{2j-1} \prod_{i=1}^m z_i = 0.
\]
It follows that \(d\varphi(\text{grad} \eta) = 0 \). If \(m \) is odd, then
\[
\eta(z_1, \cdots, z_m) = k_2 k_3 z_1 \bar{z}_1 - \frac{k_1}{2} (k_3 z_2 \bar{z}_2 + k_2 z_3 \bar{z}_3)
\]
\[
+ \sum_{i=2}^{(m-1)/2} (k_{2i+1} z_{2i} \bar{z}_{2i} - k_{2i-1} z_{2i+1} \bar{z}_{2i+1}).
\]
Harmonic Morphisms

It follows that
\[\frac{\partial \eta}{\partial \z_1} = -k_2 k_3 z_1, \quad \frac{\partial \eta}{\partial \z_2} = -\frac{k_1 k_3}{2} z_2, \quad \frac{\partial \eta}{\partial \z_3} = -\frac{k_1 k_2}{2} z_3 \]
and when \(i \geq 2 \),
\[\frac{\partial \eta}{\partial \z_{2i}} = k_{2i+1} z_{2i}, \quad \frac{\partial \eta}{\partial \z_{2i+1}} = -k_{2i} z_{2i+1}. \]

Thus we have
\[\Sigma_{j=1}^{m} k_j \hat{z}_j \cdots \hat{z}_m \frac{\partial \eta}{\partial \hat{z}_j} = k_1 \hat{z}_2 \cdots \hat{z}_m \frac{\partial \eta}{\partial \hat{z}_1} + k_2 \hat{z}_1 \hat{z}_3 \cdots \hat{z}_m \frac{\partial \eta}{\partial \hat{z}_2} + k_3 \hat{z}_1 \hat{z}_2 \hat{z}_4 \cdots \hat{z}_m \frac{\partial \eta}{\partial \hat{z}_3} + \sum_{j=2}^{(m-1)/2} k_{2j} \hat{z}_1 \cdots \hat{z}_{2j} \frac{\partial \eta}{\partial \hat{z}_{2j}} + \sum_{j=2}^{(m-1)/2} k_{2j+1} \hat{z}_1 \cdots \hat{z}_{2j+1} \frac{\partial \eta}{\partial \hat{z}_{2j+1}} = 0. \]

We obtain that \(d\varphi(\text{grad} \eta) = 0 \) if \(m \) is odd.

By using Theorem 2.1, we obtain the following

Proposition 3.1 Let \(\varphi : (\mathbb{R}^m, g_0) \to \mathbb{R}^2 \) be the polynomial map defined in (3.1) where \(g_0 \) is the standard Riemannian metric on \(\mathbb{R}^m \). Then \(\varphi \) is a harmonic morphism from conformally flat space \((\mathbb{R}^m, e^\eta g_0) \) to \(\mathbb{R}^2 \) where \(\eta \) is defined in (3.2).

Remark 3.2 For a different approach to the same problem where \(m = 2 \), using isoparametric functions, see [1], page 404.
References

Received: June 14, 2006