A Characterization of Unicyclic Graphs with the Same Independent Domination Number

Min-Jen Joua, Jenq-Jong Lina,1 and Guan-Yu Linb

a Ling Tung University, Taichung 408284, Taiwan
b National Chin-Yi University of Technology 411030, Taiwan

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2023 Hikari Ltd.

Abstract

A set D of vertices of G is an independent dominating set if no two vertices of D are adjacent and every vertex not in D is adjacent to at lest one vertex in D. The independent domination number of a graph G, denoted by $i(G)$, is the minimum cardinality of an independent dominating set in G. A unicyclic graph is a connected graph containing exactly one cycle. For $k \geq 1$, let $\mathcal{H}(k)$ be the set of unicyclic graphs H satisfying $i(H) = k$. In this paper, we provide a constructive characterization of $\mathcal{H}(k)$ for all $k \geq 1$.

Mathematics Subject Classification: 05C05, 05C69

Keywords: unicyclic graph, independent dominating set, independent domination number

1 Introduction

One of the famous concepts in graph theory is Domination in graphs. The domination problem is NP-complete for an arbitrary graph [3]. Domination in graphs is now well studied in graph theory. A set D of vertices of G is an independent dominating set (IDS) if no two vertices of D are adjacent and every vertex not in D is adjacent to at lest one vertex in D. The independent domination number of a graph G, denoted by $i(G)$, is the minimum cardinality of an independent dominating set in G. If D is an IDS of G with cardinality...
$i(G)$, then we call D an i-set of G. The independent domination number and the notation $i(G)$ were introduced by Cockayne and Hedetniemi in [2]. Recently, it was then extensively studied for various classes of graphs in the literature (see [4],[5],[6],[7]).

For $k \geq 1$, let $\mathcal{X}(k)$ be the set of unicyclic graphs H satisfying $i(H) = k$. In this paper, we provide a constructive characterization of $\mathcal{X}(k)$ for all $k \geq 1$.

2 Notations and preliminary results

All graphs considered in this paper are finite, loopless, and without multiple edges. For a graph G, $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. The (open) neighborhood $N_G(v)$ of a vertex v is the set of vertices adjacent to v in G, and the closed neighborhood $N_G[v]$ is $N_G(v) \cup \{v\}$. For any subset $A \subseteq V(G)$, denote $N_G(A) = \bigcup_{v \in A} N_G(v)$ and $N_G[A] = \bigcup_{v \in A} N_G[v]$. The degree of v is the cardinality of $N_G(v)$, denoted by $\deg_G(v)$. A vertex x is said to be a leaf of G if $\deg_G(x) = 1$. A vertex of G is a support vertex if it is adjacent to a leaf in G. We denote by $L(G)$, and $U(G)$ the collections of the leaves and support vertices of G, respectively. For two sets A and B, the difference of A and B, denoted by $A - B$, is the set of all the elements of A that are not elements of B. For a subset $A \subseteq V(G)$, the deletion of A from G is the graph $G - A$ obtained by removing all vertices in A and all edges incident to these vertices. A u-v path $P : u = v_1, v_2, \ldots, v_k = v$ of G is a sequence of k vertices in G such that $v_iv_{i+1} \in E(G)$ for $i = 1, 2, \ldots, k - 1$. For any two vertices u and v in G, the distance between u and v, denoted by $\text{dist}_G(u, v)$, is the minimum length of the u-v paths in G. Denote by P_n a n-path with n vertices. The length of P_n is n. 1. For other undefined notions, the reader is referred to [1] for graph theory.

The following lemmas are useful.

Lemma 2.1. For $n \geq 1$, $i(P_n) = \left\lceil \frac{n}{3} \right\rceil$.

Proof. It’s true for $n = 1, 2$ and 3. For $n \geq 4$, let $k = \left\lceil \frac{n}{3} \right\rceil$ and $P_n : v_1, v_2, \ldots, v_n$. Suppose $D = \{v_2, \ldots, v_{3k-1}, \ldots, v_{3k-4}, v_m\}$, where $m = 3k - 2$ or $3k - 1$ is an IDS of P_n, then $i(P_n) \leq |D| = (k - 1) + 1 = k$.

Suppose, by contradiction, $i(P_n) = s \leq k - 1$ and $D' = \{v_{i_1}, \ldots, v_{i_s}\}$ is an i-set of P_n, where $i_1 < i_2 < \ldots, i_s$. We can see that $\text{dist}(v_j, v_{j+1}) \leq 3$ for $j = 1, \ldots, s - 1$. Then $n = |P_n| = |D'| + |P_n - D'| \leq s + [1 + 2(s - 1) + 1] = 3s \leq 3(k - 1) < n$. This is a contradiction, so $i(P_n) = k = \left\lceil \frac{n}{3} \right\rceil$.

Lemma 2.2. For $n \geq 3$, $i(C_n) = \left\lceil \frac{n}{3} \right\rceil$.

Proof. It’s true for $n = 3$. For $n \geq 4$, let $k = \left\lceil \frac{n}{3} \right\rceil$ and $C_n : v_1, v_2, \ldots, v_n, v_1$. Assume D is an i-set of C_n and $v_1 \in D$. Then $v_2 \notin D$ and $v_n \notin D$. Let
Proof. We can see that \(P' = C_n - \{v_1, v_2, v_n\} \) and \(D' = D - \{v_1\} \). Then \(D' \) is an \(i \)-set of \(P' \), where \(|P'| = n - 3\). By Lemma 2.1, \(|D'| = i(P') = \left\lceil \frac{n-3}{3} \right\rceil = \left\lceil \frac{n}{3} \right\rceil - 1\). Thus \(i(C_n) = |D| = |D'| + 1 = (\left\lceil \frac{n}{3} \right\rceil - 1) + 1 = \left\lceil \frac{n}{3} \right\rceil \). \(\square \)

Lemma 2.3. Suppose \(H \) is obtained from \(H' \in \mathcal{H}(k) \) by adding one vertex \(v \) and the edge \(uv \), where \(u \in V(H') \), then \(k \leq i(H) \leq k + 1 \). Moreover, the followings hold.

(i) The graph \(H \in \mathcal{H}(k+1) \) if and only if \(w \notin D' \) for every \(i \)-set \(D' \) of \(H' \).

(ii) The graph \(H \in \mathcal{H}(k) \) if and only if \(w \in D' \) for some \(i \)-set \(D' \) of \(H' \).

Proof. We can see that \(H \) is unicyclic. If \(D' \) is an \(i \)-set of \(H' \), then \(D' \) or \(D' \cup \{v\} \) is an IDS of \(H \). So \(i(H) \leq |D'| + 1 = k + 1 \). The equalities hold if and if \(D' \cup \{v\} \) is an \(i \)-set of \(H \). Thus we got (i).

If \(D \) is an \(i \)-set of \(H \), then \(D, D - \{v\} \) or \((D - \{v\}) \cup \{w\}\) is an IDS of \(H' \). So \(i(H) = |D| \geq i(H') = k \). The equalities hold if and if \(D_1 \) is an \(i \)-set of \(H' \), where \(D_1 = D \) or \(D_1 = (D - \{v\}) \cup \{w\} \). Note that \(w \in D_1 \). Thus we got (ii). \(\square \)

Lemma 2.4. Suppose \(H \) is obtained from \(H' \in \mathcal{H}(k) \) by adding a \(P_2 : v, v' \) and the edge \(uv \), where \(w \in V(H') \), then \(H \in \mathcal{H}(k+1) \).

Proof. We can see that \(H \) is unicyclic. Since \(v' \notin N_H[V(H')] \), this means that \(i(H) \geq i(H') + 1 = k + 1 \). Let \(D' \) be an \(i \)-set of \(H' \). Then \(D = D' \cup \{v\} \) is an ISD of \(H \). So \(k + 1 \leq i(H) \leq |D| = |D'| + 1 = k + 1 \), thus \(H \in \mathcal{H}(k+1) \). \(\square \)

3 Characterization

In this section, we characterize the set \(\mathcal{H}(k) \) for all \(k \geq 1 \). Suppose \(H' \) is a unicyclic graph and \(H \) is obtained from \(H' \) by one of the following Operations.

Operation O1. Add a new vertex \(v \) and the edge \(uv \), where \(w \in V(H') \) and \(w \notin D' \) for every \(i \)-set \(D' \) of \(H' \).

Operation O2. Add a new path \(P_2 \) and the edge \(uv \), where \(w \in V(H') \) and \(v \in V(P_2) \).

Operation O3. Add a new vertex \(v \) and the edge \(uv \), where \(w \in V(H') \) and \(w \in D' \) for some \(i \)-set \(D' \) of \(H' \).

Lemma 3.1. Let \(H' \in \mathcal{H}(k-1) \). Suppose \(H \) is obtained from \(H' \) by one of the Operation O1 or Operation O2, then \(H \in \mathcal{H}(k) \).
Proof. Suppose H is obtained from some H' by the Operation O_i, where $i = 1, 2$. Then H is a unicyclic graphs.

Case 1. $i = 1$. By Lemma 2.3 (i), then $i(H) = i(H') + 1 = k$ and $H \in \mathcal{H}(k)$.

Case 2. $i = 2$. By Lemma 2.4, $i(H) = i(H') + 1 = k$. Therefore, $H \in \mathcal{H}(k)$.

By Case 1 and Case 2, $H \in \mathcal{H}(k)$.

Lemma 3.2. Let $H' \in \mathcal{H}(k)$. Suppose that H is obtained from H' by the Operation O_3, then $H \in \mathcal{H}(k)$.

Proof. We can see that H is unicyclic. By Lemma 2.3(ii), $k \leq i(H) \leq |D'| = i(H') = k$, thus $H \in \mathcal{H}(k)$.

Let $\mathcal{C}(1) = \{C_3\}$ and $\mathcal{A}(1) = \{C_3\} \cup \mathcal{A}'(1)$, where $\mathcal{A}'(1)$ is the collection of graphs in Figure 1.

![Figure 1: The collection $\mathcal{A}'(1)$ of graphs](image)

For $k \geq 2$, we define the following collections.

(i) $\mathcal{C}(k) = \{C_{3k-2}, C_{3k-1}, C_{3k}\}$.

(ii) $\mathcal{B}(k)$ is the collection of the unicyclic graphs H which is obtained from some $H' \in \mathcal{A}(k-1)$ by one of the Operation O_1 or Operation O_2.

(iii) $\mathcal{A}'(k)$ is the collection of the unicyclic graphs H which is obtained from a sequence H_1, where $H_1 \in \mathcal{C}(k)$ or $H \in \mathcal{B}(k)$, $H_2, \ldots, H_m = H$ and, if $j = 1, 2, \ldots, m-1$, H_{j+1} is obtained from H_j by the Operation O_3.

(iv) $\mathcal{A}(k) = \mathcal{C}(k) \cup \mathcal{B}(k) \cup \mathcal{A}'(k)$

By Lemma 2.2, we have the following lemma.

Lemma 3.3. For $k \geq 1$, $\mathcal{C}(k) \subset \mathcal{H}(k)$.

We first prove the following lemma.

Lemma 3.4. For $k \geq 1$, $\mathcal{A}(k) \subseteq \mathcal{H}(k)$.
Proof. We prove it by induction on k. It’s true for $k = 1$. Assume that it’s true for $k - 1$, where $k \geq 2$, and $H \in \mathcal{S}(k)$. Then H is unicyclic. We consider three cases.

Case 1. $H \in \mathcal{C}(k)$. By Lemma 3.3, then $H \in \mathcal{H}(k)$.

Case 2. $H \in \mathcal{B}(k)$. Then H is obtained from some $H' \in \mathcal{S}(k - 1)$ by one of the Operation O1 or Operation O2. By the hypothesis, $H' \in \mathcal{H}(k - 1)$. By Lemma 3.1, $H \in \mathcal{H}(k)$.

Case 3. $H \in \mathcal{S}(k)$. Then H is obtained from a sequence H_1, where $H_1 \in \mathcal{C}(k)$ or $H \in \mathcal{B}(k)$, $H_2, \ldots, H_m = H$ and, if $j = 1, 2, \ldots, m - 1$, H_{j+1} is obtained from H_j by the Operation O3. By Case 1 and Case 2, we have that $H_1 \in \mathcal{H}(k)$. By Lemma 3.2, $i(H) = i(H_m) = i(H_{m-1}) = \cdots = i(H_1) = k$. Thus $H \in \mathcal{H}(k)$.

By Case 1, Case 2 and Case 3, we have that $H \in \mathcal{H}(k)$. □

Theorem 3.5 is the main theorem.

Theorem 3.5. For $k \geq 1$, $\mathcal{S}(n) = \mathcal{H}(n)$.

Proof. By Lemma 3.4, we need only prove that $\mathcal{H}(k) \subseteq \mathcal{S}(k)$ for all $k \geq 1$ and it is proved by contradiction. Suppose $H \in \mathcal{H}(k)$ and $H \notin \mathcal{S}(k)$ such that $|H|$ is as small as possible. Let C be the cycle of H. By Lemma 3.3, then $H \neq C$ and $L(H) \neq \emptyset$. Let x be a leaf of H and w be the neighbor of x. Then $H' = H - \{x\}$ is unicyclic. By Lemma 2.3, $k - 1 \leq i(H') \leq k$.

Case 1. $i(H') = k$.

Then $H' \in \mathcal{H}(k)$. Since $|H'| < |H|$, by the hypothesis, $H' \in \mathcal{S}(k)$. Since $i(H) = i(H')$, by Lemma 2.3 (ii), $w \in D'$ for some i-set D' of H'. Thus H is obtained from $H' \in \mathcal{S}(k)$ by the Operation O3, it means that $H \in \mathcal{S}(k)$. This is a contradiction.

Case 2. $i(H') = k - 1$.

Then $H' \in \mathcal{H}(k - 1)$. Since $|H'| < |H|$, by the hypothesis, $H' \in \mathcal{S}(k - 1)$. Since $i(H) = i(H') + 1$, by Lemma 2.3 (i), $w \notin D'$ for every i-set D' of H'. Thus H is obtained from $H' \in \mathcal{S}(k - 1)$ by the Operation O1, it means that $H \in \mathcal{B}(k)$. So $H \in \mathcal{S}(k)$, this is a contradiction.

By Case 1 and Case 2, $\mathcal{H}(k) \subseteq \mathcal{S}(k)$ for all $k \geq 1$. We complete the proof. □

Hence we provide a constructive characterization $\mathcal{S}(k)$ of $\mathcal{H}(k)$ for all $k \geq 1$.

References

https://doi.org/10.1002/net.3230070305

https://doi.org/10.1016/j.disc.2012.11.031

https://doi.org/10.1016/0012-365x(94)00022-b

https://doi.org/10.1007/bf02988312

https://doi.org/10.1016/j.disopt.2010.02.004

Received: March 15, 2023; Published: April 6, 2023