The Strong Convergence for Solutions of Pseudomonotone Variational Inequality Problem in Banach Spaces

Xin Chang 1∗, Muyuan Liu 2 and Liang Yan 1

1 School of Mathematics and Statistics
Yunnan University of Finance and Economics, 650221

2 School of Mathematics Science, Beijing Normal University, 100875

Abstract

In this paper, based on the line-search technique, an iteration method to solve pseudomonotone variational inequality problem in 2-uniformly convex Banach spaces is introduced. The iteration scheme presented in this paper is proved to converge strongly to a solution of the pseudomonotone variational inequality problem. Our result extends the main result in [4].

Keywords: pseudomontone variational inequality, iteration algorithm, Banach space, strong convergence

1 Introduction

Let C be a nonempty closed convex subset of real Banach space E with norm ∥⋅∥, we denote by E∗ the dual space of E and ⟨f, x⟩ the value of f ∈ E∗ at x ∈ E, and let F : E → E∗ be a nonlinear operator. The variational inequality problem (for short VIP) is to find x∗ ∈ C such that

⟨Fx∗, y − x∗⟩ ≥ 0, ∀y ∈ C. (1.1)

The set of solution of VI(C, F) is denoted by Γ.
It is well known that a variational inequality problem may be converted into a fixed point problem of a nonlinear operator. So many fixed point methods are widely used to solve the solution of variational inequality problem. For example, Lecutin E.S [3] proposed the following projection algorithm to solve the strongly monotone variational inequality problem,

\[x_{k+1} = P_C(x_k - \tau F(x_k)), \quad (1.2) \]

where, \(P_C \) is the projection operator on \(C \), \(F \) is strongly monotone, \(L \)-Lipschitzian and \(\tau \) is a sufficiently small positive number. Further, to weaken the constraint on \(F \), Korpelevich and Antipin [1] proposed the following extragradient method (EGM) to solve monotone variational inequality problem:

\[
\begin{aligned}
& x_0 \in C, \\
& y_n = P_C(x_n - \tau Fx_n), \\
& x_{n+1} = P_C(x_n - \tau Fy_n),
\end{aligned}
\quad (1.3)\]

where, \(F : H \to H \) is monotone and \(L \)-Lipschitzian, \(\tau \in (0, \frac{1}{L}) \). What’s more, many authors have extended the algorithm (1.3) from Hilbert spaces to Banach spaces (see, for instance [2]). Because it is difficult to compute two projections at each iteration step in algorithm (1.3), so Tseng proposed Tseng’s extragradient method (TEGM) [9] that involves only one projection as follows to solve monotone variational inequality problem.

\[
\begin{aligned}
& x_0 \in H, \\
& y_n = P_C(x_n - \tau Fx_n), \\
& x_{n+1} = y_n - \tau (Fy_n - Fx_n),
\end{aligned}
\quad (1.4)\]

where, \(F : H \to H \) is monotone and \(L \)-Lipschitzian on \(H \), \(\tau \in (0, \frac{1}{L}) \).

In 2020, Shehu [17] improved the algorithm (1.4) to investigate the convergence of variational inequality in \(2 \)-uniformly convex Banach space when \(F \) is \(L \)-Lipschitzian and monotone. The iteration is as follows:

\[
\begin{aligned}
& x_1 \in E, \\
& y_n = \Pi_CJ^{-1}(Jy_n - \tau Fx_n), \\
& x_{n+1} = J^{-1}[Jy_n - \tau (Fy_n - Fx_n)],
\end{aligned}
\quad (1.5)\]

where, \(F : E \to E^* \) is monotone and \(L \)-Lipschitzian on \(E \), \(J : E \to E^* \) is the normalized dual mapping, \(0 < \tau < \frac{1}{\sqrt{2uKL}} \), and \(\Pi_C \) is the generalized projection on \(C \).

Since pseudomonotone mapping is more general than monotone mapping, so many scholars have paid attentions to study pseudomonotone variational inequality problem. For example, in 2012, Yao and Postolache [16] proposed an iterative algorithm to find the common element of the set of solution of

In 2022, Hu [4] modified Tseng’s extragradient algorithm to study the strong convergence of solution of pseudomonotone variational inequality problem in Hilbert spaces. The iterative algorithm is as follows:

\[
\begin{cases}
 x_1 \in E, \\
y_n = P_C(x_n - \frac{k}{\lambda_n}Ax_n), \\
x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n)z_n, \\
\lambda_{n+1} = \max\left\{\frac{\|Ax_n - Ay_n\|}{\mu \|x_n - y_n\|}, \lambda_n\right\}, \text{if } x_n - y_n \neq 0, \\
\lambda_n, \text{ otherwise,} \\
z_n = y_n + \frac{k}{\lambda_n}(Ax_n - Ay_n),
\end{cases}
\]

where, \(\mu \in (0, 1), k > 0,\) and \(F : H \to H\) is a pseudomonotone operator.

Motivated and inspired by the work of [17] and [4], we extend the main result in [8] from Hilbert spaces to 2-uniformly convex Banach spaces. And the strong convergence of the solution of the pseudomonotone variational inequality problem was obtained when the cost function \(F\) is pseudomonotone and \(L-\)Lipschitzian.

2 Preliminaries

Let \(E^*\) be the dual space of a real Banach space \(E\), and \(J\) be the normalized dual mapping of \(E\) into \(E^*\) (see [14]), which is defined as follows:

\[Jx = \{x^* \in E^* \mid \langle x^*, x \rangle = \|x^*\|^2 = \|x\|^2\}, \quad \forall x \in E.\]

In particular, if \(E\) is smooth, then \(J\) is single-valued; if \(E\) is uniformly smooth, then \(J\) is norm-norm uniformly continuous.

Let \(S_E\) and \(B_E\) be the unit sphere and the closed unit sphere of Banach space \(E\), respectively, \(E\) is said to be smooth if for all \(x, y \in S_E\)

\[
\lim_{n \to \infty} \frac{\|x + ty\| - \|x\|}{t}
\]

exists. The space \(E\) is said to be uniformly smooth if (2.1) converges uniformly in \(x, y \in S_E\). Moreover, \(E\) is said to be strictly convex if \(\|(x + y)/2\| < 1\) whenever \(x, y \in S_E\) and \(x \neq y\); \(E\) is said to be uniformly convex if \(\delta_E(\varepsilon) > 0, \ \forall \varepsilon \in (0, 2]\), where \(\delta_E\) is the modulus of convexity of \(E\) defined by \(\delta_E(\varepsilon) = \inf\{1 - \|\frac{x+y}{2}\| \mid x, y \in B_E, \ \|x - y\| > \varepsilon\} \) for all \(\varepsilon \in [0, 2]\); And the space \(E\) is
said to be 2-uniformly convex if there exists $c > 0$ such that $\delta_E(\varepsilon) \geq c\varepsilon^2$ for all $\varepsilon \in [0, 2]$. It is well known that E^* is 2-uniformly smooth if and only if E is 2-uniformly convex. It is obvious that every 2-uniformly convex Banach space is uniformly convex.

Let C be a nonempty closed and convex subset of E. The following functional $\phi : E \times E \to \mathbb{R}$ was introduced in [12, 13, 19] when E is a smooth Banach space

$$\phi(x, y) = \|x\|^2 - 2 \langle x, Jy \rangle + \|y\|^2, \quad (2.2)$$

clearly, $\phi(x, y) \geq (\|x\| - \|y\|)^2 \geq 0$.

The operator $\Pi_C : E \to C$ is called generalized projection if for each $x \in E$, there corresponds a unique element $x_0 \in C$ (denoted by $\Pi_C(x)$) such that $\phi(x_0, x) = \min_{y \in C} \phi(y, x)$. And for more details on the existence of Π_C, see [19].

Lemma 2.1 [7] Let $\frac{1}{p} + \frac{1}{q} = 1$, $p, q > 1$. The space E is q-uniformly smooth if and only if its dual E^* is p-uniformly convex.

Lemma 2.2 [5] Let E be a real Banach space. The following two statements are equivalent:

1. E is 2-uniformly smooth;
2. There exists constant $k > 0$ such that for any $x, y \in E$,

$$\|x + y\|^2 \leq \|x\|^2 + 2 \langle y, J(x) \rangle + 2k^2\|y\|^2, \quad (2.3)$$

where k is the 2-uniform smoothness constant. In Hilbert space $k = \frac{1}{\sqrt{2}}$.

Lemma 2.3 [18] Let E be a real uniformly convex and smooth Banach space, then the following identities hold:

(a) $\phi(x, y) = \phi(x, z) + \phi(z, y) + 2 \langle x - z, Jz - Jy \rangle, \forall x, y, z \in E$;
(b) $\phi(x, y) + \phi(y, x) = 2 \langle x - y, Jx - Jy \rangle, \forall x, y \in E$.

In addition, the functional $V(x, y) : E \times E^*$ is defined by

$$V(x, y) = \|x\|^2_E - 2 \langle x, y \rangle + \|y\|^2_{E^*}. \quad (2.4)$$

Then, it is easy to see that

$$V(x, y) = \phi(x, J^{-1}y), \forall x \in E, y \in E^*. \quad (2.5)$$

Definition 2.4 Let $C \subseteq E$ be a nonempty subset of a real Banach space E. Then the mapping $F : X \to E^*$ is called

(a) monotone on C if $\langle Fx - Fy, x - y \rangle \geq 0, \forall x, y \in C$;
(b) pseudomonotone on C if $\langle Fx, y - x \rangle \geq 0 \Rightarrow \langle Fy, y - x \rangle \geq 0$;
(c) L-Lipschitzian on C if there exists constant $L > 0$ such that for any $x, y \in C$ $\|Fx - Fy\| \leq L\|x - y\|$.
Lemma 2.5 [18] Let $C \subseteq E$ be a nonempty subset of a smooth and strictly convex Banach space E. The following results hold:

(a) $\tilde{z} \in C$ is the generalized projection of z on C if and only if the following inequality holds

\[\langle w - \tilde{z}, J\tilde{z} - Jz \rangle \geq 0, \forall w \in C; \]

(b) $\Pi_C z = \tilde{z}$ if and only if $\phi(w, \tilde{z}) \leq \phi(w, z) - \phi(\tilde{z}, z)$ for any $w \in E$;

(c) $V(x, x^*) + 2 \langle J^{-1}x^* - x, y^* \rangle \leq V(x, x^* + y^*)$ for any $x \in E$, $x^*, y^* \in E$.

Lemma 2.6 [8] If E is a 2-uniformly convex Banach space, then there exists constant $\mu \geq 1$ such that

\[\frac{1}{\mu} ||x - y||^2 \leq \phi(x, y), \forall x, y \in E. \]

Lemma 2.7 [11] Let C be a nonempty closed and convex subset of space E. Let $F : C \to E^*$ be a continuous, pseudomonotone mapping, Γ be the set of solution of $VI(C, F)$ and $z \in C$, then $z \in \Gamma \iff \langle Fx, x - z \rangle \geq 0$ for any $x \in C$.

Lemma 2.8 [6] Let $\{a_n\}$ be a nonnegative real sequence and there exists positive integer N such that $a_{n+1} \leq (1 - \alpha_n)a_n + \alpha_nb_n$ as $n \geq N$, if $\{\alpha_n\} \subset [0, 1]$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\{b_n\}$ is a sequence satisfying $\lim_{n \to \infty} b_n \leq 0$, then, $\lim_{n \to \infty} a_n = 0$.

Lemma 2.9 [15] Let $\{a_n\}$ be a sequence of real numbers and there exist subsequence $\{n_i\}$ of $\{n\}$ such that $a_{n_i} < a_{n_i+1}$ for all positive integers i. Then there exists a nondecreasing sequence $\{m_k\} \subset N$ such that $m_k \to \infty$ and the following properties are satisfied for positive integers k (sufficiently large)

\[a_{m_k} \leq a_{m_k+1} \text{ and } a_k \leq a_{m_k+1}. \]

In fact, $m_k = \max\{j \leq k : a_j < a_{j+1}\}$.

3 Main Results

In this section, we make the following assumptions.

Assumption 3.1 C is a nonempty closed and convex subset of real 2–uniformly convex and uniformly smooth Banach space E with 2-uniform smoothness constant k, and μ is the constant appeared in Lemma 2.6;

Assumption 3.2 $F : E \to E^*$ is pseudomonotone and L-Lipschitzian;

Assumption 3.3 The solution set Γ of $VI(C, F)$ is nonempty.

Now, we introduce our algorithm as follows.

Algorithm 3.4 Let Assumption 3.1–3.3 hold, $\{\alpha_n\}$ be a real sequence in $(0, 1)$. Taking $m > 0$, $\theta \in (0, 1)$, and $x_1 \in E$ is arbitrarily chosen.

Step 1 Compute:

\[y_n = \Pi_C J^{-1}(Jx_n - \frac{m}{\lambda_n}Fx_n), \quad (3.1) \]
stop if \(y_n = x_n \). Otherwise, go to Step 2.

Step 2 Compute:

\[
 z_n = J^{-1}(Jy_n + \frac{m}{\lambda_n}(Fx_n - Fy_n)), \\
 \text{(3.2)}
\]

where

\[
 \lambda_{n+1} = \begin{cases}
 \max\{\frac{2\mu k\|Fx_n - Fy_n\|}{\theta\|x_n - y_n\|}, \lambda_n\}, & \text{if } x_n - y_n \neq 0, \\
 \lambda_n, & \text{otherwise.}
\end{cases} \\
 \text{(3.3)}
\]

Step 3 Compute:

\[
 x_{n+1} = J^{-1}(\alpha_n Jx_1 + (1 - \alpha_n)Jz_n). \\
 \text{(3.4)}
\]

Set \(n := n + 1 \), and go to Step 1.

Lemma 3.5 If Assumption 3.1–3.3 hold, then sequence \(\{\lambda_n\} \) generated by Algorithm 3.4 is nondecreasing, and

\[
 0 < \lim_{n \to \infty} \lambda_n = \lambda \leq \max\{\frac{2\mu kL}{\theta}, \lambda_1\}.
\]

Proof: It is obviously seen that \(\{\lambda_n\} \) is nondecreasing from (3.3). And for some \(n \in N \), if \(x_n = y_n \), then from (3.1) we have \(x_n = \Pi_C J^{-1}(Jx_n - \frac{m}{\lambda_n}Fx_n) \) and by Lemma 2.5(a) we obtain that

\[
 \langle w - x_n, Jx_n - Jx + \frac{m}{\lambda_n}Fx_n \rangle = \frac{m}{\lambda_n} \langle w - x_n, Fx_n \rangle \geq 0, \forall w \in C.
\]

Due to \(\lambda_n > 0 \), we have \(x_n \in \Gamma \). On the other hand, when \(x_n \neq y_n \), since \(F \) is \(L \)-Lipschitzian, so we can get

\[
 \frac{2\mu k\|Fx_n - Fy_n\|}{\theta\|x_n - y_n\|} \leq \frac{2\mu kL\|x_n - y_n\|}{\theta\|x_n - y_n\|} = \frac{2\mu kL}{\theta}.
\]

From (3.3), we have

\[
 \lambda_{n+1} = \max\{\frac{2\mu k\|Fx_n - Fy_n\|}{\theta\|x_n - y_n\|}, \lambda_n\} \leq \max\{\frac{2\mu kL}{\theta}, \lambda_n\}.
\]

By induction, we get that \(\lambda_{n+1} \leq \max\{\frac{2\mu kL}{\theta}, \lambda_1\} \). Therefore, \(\{\lambda_n\} \) has upper bound and there exists \(\lambda > 0 \), such that \(\lim_{n \to \infty} \lambda_n = \lambda \leq \max\{\frac{2\mu kL}{\theta}, \lambda_1\} \).

Lemma 3.6 If Assumption 3.1–3.3 hold, the sequence \(\{x_n\} \) is generated by Algorithm 3.4, and \(m \in (0, \frac{\sqrt{2\mu}}{2\theta}) \), then \(\{x_n\} \) is bounded.

Proof Let \(x^* \in \Gamma \), it follows from the definition of \(\phi \) and (2.5) that

\[
 \phi(x^*, z_n) = V(x^*, Jy_n + \frac{m}{\lambda_n}(Fx_n - Fy_n)) \\
 = \|x^*\|^2 - 2\left\langle x^*, Jy_n + \frac{m}{\lambda_n}(Fx_n - Fy_n) \right\rangle + \|Jy_n + \frac{m}{\lambda_n}(Fx_n - Fy_n)\|^2.
\]

(3.5)
Pseudomonotone variational inequality problem

From Lemma 2.1 we know that E^* is 2-uniformly smooth. So by Lemma 2.2, we get

$$
\|Jy_n + \frac{m}{\lambda_n} (Fx_n - Fy_n)\|^2 \leq \|Jy_n\|^2 + 2 \frac{m}{\lambda_n} \langle Jy_n, Fx_n - Fy_n \rangle + \frac{2k^2m^2}{\lambda_n^2} \|Fx_n - Fy_n\|^2.
$$ (3.6)

Substituting (3.6) into (3.5), we have

$$
\phi(x^*, z_n) \leq \|x^*\|^2 - 2 \langle x^*, Jy_n \rangle - 2 \frac{m}{\lambda_n} \langle x^*, Fx_n - Fy_n \rangle
+ \|Jy_n\|^2 + 2 \frac{m}{\lambda_n} \langle Jy_n, Fx_n - Fy_n \rangle + \frac{2k^2m^2}{\lambda_n^2} \|Fx_n - Fy_n\|^2
\leq \phi(x^*, y_n) + 2 \frac{m}{\lambda_n} \langle Jy_n - x^*, Fx_n - Fy_n \rangle + \frac{2k^2m^2}{\lambda_n^2} \|Fx_n - Fy_n\|^2.
$$ (3.7)

In addition, from Lemma 2.3(a), we get

$$
\phi(x^*, y_n) = \phi(x^*, x_n) + \phi(x_n, y_n) + 2 \langle x^* - x_n, Jx_n - Jy_n \rangle.
$$ (3.8)

Substituting (3.8) into (3.7), we obtain that

$$
\phi(x^*, z_n) = \phi(x^*, x_n) + \phi(x_n, y_n) + 2 \langle x^* - x_n, Jx_n - Jy_n \rangle
+ 2 \frac{m}{\lambda_n} \langle Jy_n - x^*, Fx_n - Fy_n \rangle + \frac{2k^2m^2}{\lambda_n^2} \|Fx_n - Fy_n\|^2
\leq \phi(x^*, x_n) + \phi(x_n, y_n) + 2 \langle x^* - y_n, Jx_n - Jy_n \rangle + 2 \langle y_n - x_n, Jx_n - Jy_n \rangle
+ 2 \frac{m}{\lambda_n} \langle y_n - x^*, Fx_n - Fy_n \rangle + \frac{2k^2m^2}{\lambda_n^2} \|Fx_n - Fy_n\|^2.
$$ (3.9)

It follows from Lemma 2.5(a) and (3.1) that

$$
0 \leq \left< x^* - y_n, Jy_n - Jx_n + \frac{m}{\lambda_n} Fx_n \right> = \left< x^* - y_n, Jy_n - Jx_n \right> + \left< x^* - y_n, \frac{m}{\lambda_n} Fx_n \right>,
$$
so

$$
\left< x^* - y_n, Jx_n - Jy_n \right> \leq - \frac{m}{\lambda_n} \langle y_n - x^*, Fx_n \rangle.
$$ (3.10)

Applying Lemma 2.3(b), we have

$$
\phi(x_n, y_n) = -\phi(y_n, x_n) + 2 \langle x_n - y_n, Jx_n - Jy_n \rangle.
$$ (3.11)
Combining (3.9) with (3.11) and (3.10), we get
\[
\phi(x^*, z_n) \leq \phi(x^*, x_n) - \phi(y_n, x_n) + 2 \langle x_n - y_n, Jx_n - Jy_n \rangle + 2 \langle x^* - y_n, Jx_n - Jy_n \rangle \\
+ 2 \langle y_n - x_n, Jx_n - Jy_n \rangle + \frac{2m}{\lambda_n} \langle y_n - x^*, Fx_n - Fy_n \rangle \\
+ \frac{2k^2m^2}{\lambda^2_n} \|Fx_n - Fy_n\|^2 \\
\leq \phi(x^*, x_n) - \phi(y_n, x_n) - \frac{2m}{\lambda_n} \langle y_n - x^*, Fx_n \rangle + \frac{2m}{\lambda_n} \langle y_n - x^*, Fx_n - Fy_n \rangle \\
+ \frac{2k^2m^2}{\lambda^2_n} \|Fx_n - Fy_n\|^2 \\
= \phi(x^*, x_n) - \phi(y_n, x_n) - \frac{2m}{\lambda_n} \langle y_n - x^*, Fy_n \rangle + \frac{2k^2m^2}{\lambda^2_n} \|Fx_n - Fy_n\|^2.
\]

Since \(F\) is pseudomonotone and \(x^* \in \Gamma\), so \(\langle Fx^*, y_n - x^* \rangle \geq 0 \Rightarrow \langle Fy_n, y_n - x^* \rangle \geq 0\). Thus, the following inequality holds
\[
\phi(x^*, z_n) \leq \phi(x^*, x_n) - \phi(y_n, x_n) + \frac{2k^2m^2}{\lambda^2_n} \|Fx_n - Fy_n\|^2.
\]

Then, it follows from (3.3) that
\[
\phi(x^*, z_n) \leq \phi(x^*, x_n) - \phi(y_n, x_n) + \frac{2k^2m^2}{\lambda^2_n} \frac{\theta^2}{4k^2\mu^2} \lambda^2_{n+1} \|x_n - y_n\|^2 \\
\leq \phi(x^*, x_n) - \phi(y_n, x_n) + \frac{m^2\theta^2}{2\mu^2} \left(\frac{\lambda_{n+1}}{\lambda_n}\right)^2 \|y_n - x_n\|^2 \\
\leq \phi(x^*, x_n) - \left[1 - \frac{m^2\theta^2}{2\mu} \left(\frac{\lambda_{n+1}}{\lambda_n}\right)^2\right] \phi(y_n, x_n).
\]

From Lemma 3.5 we know that \(\lim_{n \to \infty} \lambda_n = \lambda > 0\), so \(\lim_{n \to \infty} \frac{\lambda_n}{\lambda_{n+1}} = 1\). Without loss of generality, we may assume that \(\frac{\lambda_n}{\lambda_{n+1}} \geq \frac{1}{2}\) for all positive integer \(n\), then we have \(\frac{\lambda_{n+1}}{\lambda_n} \leq 2\). Hence, we can get that
\[
\phi(x^*, z_n) \leq \phi(x^*, x_n) - \left[1 - \frac{2m^2\theta^2}{\mu}\right] \phi(y_n, x_n).
\]

Since \(0 < m < \frac{\sqrt{2\mu}}{2\theta}\), so we have \(\left[1 - \frac{2m^2\theta^2}{\mu}\right] \phi(y_n, x_n) > 0\). Then we obtain that
\[
\phi(x^*, z_n) \leq \phi(x^*, x_n).
\]
It follows from (2.5) (3.4) and (3.14) that
\[\phi(x^*, x_{n+1}) = V(x^*, \alpha_n Jx_1 + (1 - \alpha_n) Jz_n) \]
\[\leq \alpha_n \phi(x^*, x_1) + (1 - \alpha_n) \phi(x^*, z_n) \]
\[\leq \alpha_n \phi(x^*, x_1) + (1 - \alpha_n) \phi(x^*, x_n) \]
\[\leq \max\{\phi(x^*, x_1), \phi(x^*, x_n)\} \]
\[\leq \ldots \]
\[= \phi(x^*, x_1). \]

Hence \(\{x_n\} \) is bounded. The Lemma 3.6 is proved.

Lemma 3.7 Let Assumption 3.1–3.3 hold, the sequences \(\{x_n\} \) and \(\{y_n\} \) be generated by Algorithm 3.4. If \(\lim_{n \to \infty} ||x_n - y_n|| = 0 \), and \(\{x_{n_k}\} \) converges weakly to some \(z \in C \), then \(z \in \Gamma \).

Proof: It is clear that \(y_{n_k} \rightharpoonup z \) and \(J \) is norm-norm uniformly continuous. Since \(F \) is pseudomonotone and by Lemma 2.5(a) and (3.1), we can get that
\[0 \leq \left\langle x - y_{n_k}, Jy_{n_k} - Jx_{n_k} + \frac{m}{\lambda_{n_k}} Fx_{n_k} \right\rangle \]
\[= \left\langle x - y_{n_k}, Jy_{n_k} - Jx_{n_k} \right\rangle + \frac{m}{\lambda_{n_k}} \left\langle x - y_{n_k}, Fx_{n_k} \right\rangle \]
\[= \left\langle x - y_{n_k}, Jy_{n_k} - Jx_{n_k} \right\rangle + \frac{m}{\lambda_{n_k}} \left\langle x_{n_k} - y_{n_k}, Fx_{n_k} \right\rangle + \frac{m}{\lambda_{n_k}} \left\langle x - x_{n_k}, Fx \right\rangle \]
\[\leq \left\langle x - y_{n_k}, Jy_{n_k} - Jx_{n_k} \right\rangle + \frac{m}{\lambda_{n_k}} \left\langle x_{n_k} - y_{n_k}, Fx_{n_k} \right\rangle + \frac{m}{\lambda_{n_k}} \left\langle x - x_{n_k}, Fx \right\rangle . \]
(3.15)

As \(k \to \infty \) in (3.15), we may obtain \(\langle Fx, x - z \rangle \geq 0 \), \(\forall x \in C \). It follows from Lemma 2.7 that have \(z \in \Gamma \).

Theorem 3.8 Let Assumption 3.1–3.3 hold, \(\{x_n\}_{n=1}^{\infty} \) be a sequence generated by Algorithm 3.4. If \(m \in (0, \frac{\sqrt{2\mu}}{2\theta}) \), \(\{\alpha_n\} \subset (0, 1) \), and \(\lim_{n \to \infty} \alpha_n = 0 \), \(\sum_{n=1}^{\infty} \alpha_n = \infty \), then the sequence \(\{x_n\} \) converges strongly to \(x^* = \Pi_{\Gamma}(x_1) \in \Gamma \).

Proof: By Lemma 3.6 we know the sequence \(\{x_n\} \) is bounded. Setting \(y^* = -\alpha_n(Jx_1 - Jx^*) \) and \(x^* \in \Gamma \). From Lemma 2.5(c) (3.4) and (3.14), we
have
\[\phi(x^*, x_{n+1}) = V(x^*, \alpha_n J x_1 + (1 - \alpha_n) J z_n) \]
\[\leq V(x^*, \alpha_n J x_1 + (1 - \alpha_n) J z_n + y^*) - 2 \langle x_{n+1} - x^*, y^* \rangle \]
\[\leq V(x^*, \alpha_n J x_1 + J z_n - \alpha_n J z_n - \alpha_n J x_1 + \alpha_n J x^*) \]
\[+ 2\alpha_n \langle x_{n+1} - x^*, J x - J x^* \rangle \]
\[= V(x^*, (1 - \alpha_n) J z_n + \alpha_n J x^*) + 2\alpha_n \langle x_{n+1} - x^*, J x_1 - J x^* \rangle \]
\[\leq V(x^*, (1 - \alpha_n) J z_n) + V(x^*, \alpha_n J x^*) + 2\alpha_n \langle x_{n+1} - x^*, J x_1 - J x^* \rangle \]
\[= (1 - \alpha_n) V(x^*, J z_n) + 2\alpha_n \langle x_{n+1} - x^*, J x_1 - J x^* \rangle \]
\[\leq (1 - \alpha_n) V(x^*, J x_n) + 2\alpha_n \langle J x_1 - J x^*, x_{n+1} - x^* \rangle \]
\[= (1 - \alpha_n) \phi(x^*, x_n) + 2\alpha_n \langle J x_1 - J x^*, x_{n+1} - x^* \rangle. \]
(3.16)

The rest proof is divided into two cases:

Case 1 Suppose that there exits \(n_0 \in \mathbb{N} \) such that \(\{\phi(x^*, x_n)\}_{n=n_0}^{\infty} \) is non-increasing, then the sequence \(\{\phi(x^*, x_n)\}_{n=1}^{\infty} \) converges, and \(\phi(x^*, x_n) \to \phi(x^*, x_{n+1}) \to 0 \) as \(n \to \infty \). Using (3.13), we get that
\[\phi(x^*, x_{n+1}) \leq \alpha_n \phi(x^*, x_1) + (1 - \alpha_n) \phi(x^*, z_n) \]
\[\leq \alpha_n \phi(x^*, x_1) + (1 - \alpha_n) \phi(x^*, x_n) - (1 - \alpha_n)(1 - \frac{2m^2\theta^2}{\mu}) \phi(y_n, x_n). \]

It follows that \((1 - \alpha_n)(1 - \frac{2m^2\theta^2}{\mu}) \phi(y_n, x_n) \leq \phi(x^*, x_n) - \phi(x^*, x_{n+1}) + \alpha_n M_1 \), where, \(M_1 = \phi(x^*, x_1) + \sup \phi(x^*, x_n) \). Since \(m \in (0, \frac{\sqrt{\phi}}{\theta}) \), so we have \(1 - \frac{2m^2\theta^2}{\mu} > 0 \). Then we obtain that \((1 - \alpha_n)(1 - \frac{2m^2\theta^2}{\mu}) \phi(y_n, x_n) \leq \phi(x^*, x_n) - \phi(x^*, x_{n+1}) \to 0 \) as \(n \to \infty \). Hence, \(\phi(y_n, x_n) \to 0 \), as \(n \to \infty \). From Lemma 2.6, we know that
\[\|y_n - x_n\| \to 0, \ n \to \infty. \]
(3.17)

It follows from (3.2) and (3.17) that
\[\|J z_n - J y_n\| = \|J y_n + \frac{m}{\lambda_n} (F x_n - F y_n) - J y_n\| \]
\[= \frac{m}{\lambda_n} \|F x_n - F y_n\| \leq \frac{mL}{\lambda_n} \|y_n - x_n\| \to 0, \ n \to \infty. \]

In addition, since \(J \) is norm-norm uniformly continuous, we have
\[\|z_n - y_n\| \to 0, \ n \to \infty. \]
(3.18)

From (3.2) we can get that
\[\|J x_{n+1} - J z_n\| = \|\alpha_n J x_1 + J z_n - \alpha_n J z_n - J z_n\| = \alpha_n \|J x_1 - J z_n\| \to 0, \ n \to \infty. \]
Further, we also have
\[\|x_{n+1} - z_n\| \to 0, \ n \to \infty. \] (3.19)

Since
\[\|x_{n+1} - x_n\| \leq \|x_{n+1} - z_n\| + \|z_n - y_n\| + \|y_n - x_n\|. \] (3.20)
From (3.17) (3.18) (3.19) and (3.20), we have
\[\|x_{n+1} - x_n\| \to 0, \ n \to \infty. \] (3.21)
Since \(\{x_n\} \) is bounded, there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \), which converges weakly to some \(z \in E \), such that
\[\lim sup_{n \to \infty} \langle Jx_1 - Jx^*, x_n - x^* \rangle = \lim_{k \to \infty} \langle Jx_1 - Jx^*, x_{n_k} - x^* \rangle = \langle Jx_1 - Jx^*, z - x^* \rangle. \] (3.22)
By Lemma 3.7 and (3.17) we have \(z \in \Gamma \). Since \(x^* = \Pi_\Gamma(x_1) \), from (3.22) and Lemma 2.5 we can get that
\[\lim sup_{n \to \infty} \langle Jx_1 - Jx^*, x_n - x^* \rangle = \langle Jx_1 - Jx^*, z - x^* \rangle \leq 0. \] (3.23)
From (3.21) and (3.23), the following inequalities hold
\[\lim sup_{n \to \infty} \langle Jx_1 - Jx^*, x_{n+1} - x^* \rangle \leq \lim sup_{n \to \infty} \langle Jx_1 - Jx^*, x_{n+1} - x_n \rangle
+ \lim sup_{n \to \infty} \langle Jx_1 - Jx^*, x_n - x^* \rangle \] (3.24)
\[= \langle Jx_1 - Jx^*, z - x^* \rangle \leq 0. \]
Thus, it follows from (3.16) (3.24) and Lemma 2.8 that \(\lim_{n \to \infty} \phi(x^*, x_n) = 0 \). Therefore, from Lemma 2.6, we can conclude that \(\{x_n\} \) converges strongly to \(x^* \).

Case 2: Suppose that there exists a subsequence \(\{x_{n_j}\} \) of \(\{x_n\} \) such that
\[\phi(x^*, x_{n_j}) < \phi(x^*, x_{n_{j+1}}), \ \forall j \in N. \]
From Lemma 2.9, we know that there exists a nondecreasing sequence \(\{n_k\} \) of \(N \) such that \(\lim_{k \to \infty} n_k = \infty \), and the following inequalities hold for all positive integer \(k \)
\[\phi(x^*, x_{n_k}) \leq \phi(x^*, x_{n_k+1}), \ \text{and} \ \phi(x^*, x_k) \leq \phi(x^*, x_{n_k+1}). \] (3.25)
By (3.14) and (3.25), we can obtain that
\[\phi(x^*, x_{n_k}) \leq \phi(x^*, x_{n_k+1}) \leq \alpha_{n_k} \phi(x^*, x_1) + (1 - \alpha_{n_k}) \phi(x^*, z_{n_k})
\leq \alpha_{n_k} \phi(x^*, x_1) + (1 - \alpha_{n_k}) \phi(x^*, x_{n_k}). \] (3.26)
Since \(\lim_{k \to \infty} \alpha_{n_k} = 0 \), we have \(\phi(x^*, x_{n_k+1}) - \phi(x^*, x_{n_k}) \to 0 \) as \(k \to \infty \). Since \(\{x_{n_k}\} \) is bounded, there exists a subsequence of \(\{x_{n_k}\} \) still denoted by \(\{x_{n_k}\} \) which converges weakly to \(z \in E \). Next, the same as the arguments in Case 1, we can get that
\[
\|x_{n_k+1} - x_{n_k}\| \to 0, \quad k \to \infty,
\]
and
\[
\limsup_{k \to \infty} \langle x_{n_k+1} - x^*, Jx_1 - Jx^* \rangle = \limsup_{k \to \infty} \langle x_{n_k} - x^*, Jx_1 - Jx^* \rangle \leq 0. \tag{3.27}
\]
Combining (3.16) with (3.25), we have
\[
\phi(x^*, x_{n_k+1}) \leq (1 - \alpha_{n_k})\phi(x^*, x_{n_k}) + 2\alpha_{n_k} \langle Jx_1 - Jx^*, x_{n_k+1} - x^* \rangle \\
\leq (1 - \alpha_{n_k})\phi(x^*, x_{n_k+1}) + 2\alpha_{n_k} \langle x_{n_k+1} - x^*, Jx_1 - Jx^* \rangle.
\]
From (3.25), we get that
\[
\phi(x^*, x_{n_k}) \leq \phi(x^*, x_{n_k+1}) \leq 2 \langle x_{n_k+1} - x^*, Jx_1 - Jx^* \rangle.
\]
Moreover, from (3.27) we obtain
\[
\limsup_{k \to \infty} \phi(x^*, x_{n_k}) \leq 2 \limsup_{k \to \infty} \langle x_{n_k+1} - x^*, Jx_1 - Jx^* \rangle \leq 0. \tag{3.28}
\]
So, it follows from (3.16) (3.28), Lemma 2.8 and Lemma 2.6 that \(\{x_n\} \) converges strongly to \(x^* \). The proof is completed.

References

Received: February 19, 2023; Published: March 21, 2023