Applied Mathematical Sciences, Vol. 15, 2021, no. 6, 249 - 264 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2021.914484

Connected Components of a Network in Pretopology

Monique Dalud-Vincent

MEPS - Max Weber Center UFR ASSP - University Lyon 2 5 Avenue Pierre Mendès-France 69676 Bron cedex, France

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2021 Hikari Ltd.

Abstract

In this paper, we present properties of connected components in the case of a network (which is defined as a family of pretopologies). The network can be analyse by the union or by the intersection or by the composition of the different pretopologies.

Mathematics Subject Classification: 54A05, 54B05, 54B15

Keywords: pretopology, connected component, network

1. Introduction

In Pretopology (see [1][2][5]), a network is defined as a family of pretopologies. Most often, it is studied by the union or by the intersection or by the composition of the different pretopologies constituting it (see [6]).

We have already studied the case of the strong connectivity (see [3][4]). So we highlight algorithms for searching the connected components (which is equivalent for searching the greatest connected subspaces (see [5])) of a network given the connected components of each pretopological space of the network.

2. Different Types of Pretopological Spaces (see [1][2][3])

Definition 1. Let X be a non empty set. P(X) denotes the family of subsets of X. We call pseudoclosure on X any mapping *a* from P(X) onto P(X) such as :

$$a(\emptyset) = \emptyset$$

$$\forall A \subset X, A \subset a(A)$$

(X, a) is then called pretopological space.

We can define 4 different types of pretopological spaces.

1- (X, a) is a V type pretopological space if and only if

 $\forall A \subset X, \forall B \subset X, A \subset B \Rightarrow a(A) \subset a(B).$

2- (X, a) is a V_D type pretopological space if and only if

 $\forall A \subset X, \forall B \subset X, a(A \cup B) = a(A) \cup a(B).$

3- (X, a) is a V_S type pretopological space if and only if

$$\forall A \subset X, a(A) = \bigcup_{x \in A} a(\{x\})$$

4- (X, a) a V_D type pretopological space, is a topological space if and only if

$$\forall A \subset X, \ a(a(A)) = a(A).$$

Property 2. If (X, a) is a V_S space then (X, a) is a V_D space. If (X, a) is a V_D space then (X, a) is a V space.

Example 3. Let X be a non empty set and R be a binary relationship defined on X.

The pretopology of descendants, noted a_d , is defined by : $\forall A \subset X, a_d(A) = \{ x \in X / R(x) \cap A \neq \emptyset \} \cup A \text{ with } R(x) = \{ y \in X / x R y \}.$

The pretopology of ascendants, noted a_a , is defined by : $\forall A \subset X, a_a(A) = \{ x \in X / R^{-1}(x) \cap A \neq \emptyset \} \cup A \text{ with } R^{-1}(x) = \{ y \in X / y R x \}.$

These pretopologies are V_S ones.

The pretopology of ascendant-descendants, noted a_{ad} , is defined by : $\forall A \subset X, a_{ad}(A) = \{ x \in X / R^{-1}(x) \cap A \neq \emptyset \text{ and } R(x) \cap A \neq \emptyset \} \cup A.$ This pretopology is only V one.

3. Different Pretopological Spaces Defined from a Space (X, a) and Closures (see [1][2][6])

Definition 4. Let (X, a) be a V pretopological space. Let $A \subset X$. A is a closed subset if and only if a(A) = A.

We note $\forall A \subset X$, $a^0(A) = A$ and $\forall n, n \ge 1$, $a^n(A) = a(a^{n-1})(A)$.

We name closure of A the subset of X, denoted $F_a(A)$, which is the smallest closed subset which contains A.

F'_a, the inverse of the closure generated by *a*, is defined by : \forall A ⊂ X, F'_a(A) = { y ∈ X/ F_a({y}) ∩ A ≠ ∅ }.

We note $a'' = F'_a \odot F_a$ (a'' is the composed of the mapping F'_a and F_a) and F''_a the closure according to a''.

Remark 5. $F_a(A)$ is the intersection of all closed subsets which contain A. In the case where (X, a) is a "general" pretopological space (i.e. is not a V space, nor a V_D space, nor a V_S space, nor a topological space), the closure may not exist.

Proposition 6. Let (X, a) be a V space. Let $A \subset X$. If one of the two following conditions is fulfilled :

- X is a finite set - a is of V_S type

then $F_a(A) = \bigcup_{n>0} a^n(A)$.

Remark 7. If a is of V type then a^n , F_a , a^n and F_a^n also are of V type and F_a^n is of V_S type. If a is of V_S type then a^n , F_a , a^n , F_a^n and F_a^n are also of V_S type.

Definition 8. Let (X, a) be a V pretopological space. Let $A \subset X$. We define the induced pretopology on A by a, denoted a_A , by :

 $\forall C \subset A, a_A(C) = a(C) \cap A.$

(A, a_A) (or more simply A) is said pretopological subspace of (X, a). We note $(F_a)_A$ the closing obtained by restriction of closing F_a on A. $(F_a)_A$ is such as $\forall C \subset A$, $(F_a)_A(C) = F_a(C) \cap A$.

4. Connectivity in (X, a) (see [1][2][5][7][8][9][10][11])

Definition 9. Let (X, a) be a V pretopological space.

(X, a) is connected if and only if $\forall C \subset X, C \neq \emptyset, F_a(C) = X$ or $F_a(X - F_a(C)) \cap F_a(C) \neq \emptyset$.

Definition 10. Let (X, a) be a V pretopological space. Let A a non empty subset of X. Let B a non empty subset of X. There exists a chain in (X, a)

a) from B to A if and only if $B \subset F^{"}{}_{a}(A)$.

Proposition 11 (see [7]). Let (X, a) be a V pretopological space.

If $\forall x \in X \text{ and } \forall y \in X$, there exists a chain in (X, a) from $\{y\}$ to $\{x\}$ then (X, a) is connected.

Proposition 12 (see [7]). Let (X, a) be a V_S pretopological space.

i- (X, a) is connected $\Leftrightarrow \forall x \in X$ and $\forall y \in X$, there exists a chain in (X, a) from $\{y\}$ to $\{x\}$.

ii- (X, a) is connected $\Leftrightarrow \forall x \in X \text{ and } \forall y \in X$, there exists a sequence $x_0 \dots x_n$ of elements of X such as $x_0 = x$, $x_n = y$ with $\forall j = 0, \dots, n-1$, $x_{j+1} \in a(\{x_j\})$ or $x_j \in a(\{x_{j+1}\})$.

Definition 13. Let (X, a) be a V pretopological space. Let $A \subset X$ with A non empty.

A is a connected subset of (X, a) if and only if A endowed with $(F_a)_A$ is connected.

A is a connected component of (X, a) if and only if A is a connected subset of (X, a) and $\forall B, A \subset B \subset X$ with $A \neq B$, B is not a connected subset of (X, a).

A is a connected subspace of (X, a) if and only if (A, a_A) , as a pretopological space, is connected.

A is a greatest connected subspace of (X, a) if and only if (A, a_A) is a connected subspace of (X, a) and $\forall B, A \subset B \subset X$ and $A \neq B$, (B, a_B) is not a connected subspace of (X, a).

Proposition 14 (see [5]). Let (X, a) be a V pretopological space. Let $A \subset X$ with A non empty.

A is a connected component of (X, a) if and only if A is a greatest connected subspace of (X, a).

Proposition 15. Let (X, a) be a V pretopological space. Let $A \subset X$ with A non empty.

i- If $\forall x \in A$ and $\forall y \in A$, there exists a chain in (A, a_A) from $\{y\}$ to $\{x\}$ then A is a connected subset of (X, a).

ii- If $\forall x \in A$ and $\forall y \in A$, there exists a sequence x_0, \dots, x_n of elements of A such as $x_0 = x$, $x_n = y$ with $\forall j = 0, \dots, n-1$, $x_{j+1} \in a(\{x_j\})$ or $x_j \in a(\{x_{j+1}\})$ then A is a connected subset of (X, a).

Proof. i- If $\forall x \in A$ and $\forall y \in A$, there exists a chain in (A, a_A) from $\{y\}$ to $\{x\}$

252

Then (A, a_A) is a connected subspace of (X, a) (Proposition 11 and Definition 13)

and then A is a connected subset of (X, a) (see [5]).

ii- If $\forall x \in A$ and $\forall y \in A$, there exists a sequence x_0, \dots, x_n of elements of A such as $x_0 = x, x_n = y$ with $\forall j = 0, \dots, n-1, x_{j+1} \in a(\{x_j\})$ or $x_j \in a(\{x_{j+1}\})$ then $\forall x \in A$ and $\forall y \in A$, there exists a chain in (A, a_A) from $\{y\}$ to $\{x\}$ (see [7])

then A is a connected subset of (X, a) (Proposition 15-i).

Remark 16. Generally speaking, if $\forall x \in A$ and $\forall y \in A$, there exists a chain in (X, a) from $\{y\}$ to $\{x\}$ then A is not a connected subset of (X, a).

Example 17. Let (X, a) a pretopological space with $X = \{a, b, c, d\}$ and $A = \{a, d\}$. Let *a* pretopology of descendants defined by the following graph 1 :

Х	R(x)
a	ø
b	{ a, c }
с	Ø
d	{c}

Graph 1

 $\forall x \in A \text{ and } \forall y \in A, \text{ there exists a chain in } (X, a) \text{ from } \{y\} \text{ to } \{x\} \text{ but } A$ is not a connected subset of (X, a).

Remark 18. Generally speaking, the converse of ii- is not true.

Example 19. Let (X, a) a pretopological space with $X = \{a, b, c\}$. Let *a* pretopology of ascendant-descendants defined by the following graph 2 :

Х	R(x)
a	{c}
b	{ a, c }
С	{b}

Grapł	1 2
-------	-----

 $F_a(\{a\}) = \{a\}$ and $F_a(\{b\}) = F_a(\{c\}) = X$ with $F_a(\{b, c\}) = X$ so $F_a(X - F_a(\{a\})) \cap F_a(\{a\}) = \{a\} \neq \emptyset$ then (X, a) is connected.

But there does not exist a sequence x_0, \dots, x_n of elements of X such as $x_0 = c$, $x_n = a$ with $\forall j = 0, \dots, n-1, x_{j+1} \in a(\{x_j\})$ or $x_j \in a(\{x_{j+1}\})$.

Proposition 20. Let (X, a) be a V_S pretopological space. Let $A \subset X$ with A non empty.

i- If A is a connected subset of (X, a) then $\forall x \in A$ and $\forall y \in A$, there exists a chain in (X, a) from $\{y\}$ to $\{x\}$.

ii- If A is a connected subset of (X, a) then $\forall x \in A$ and $\forall y \in A$, there exists a sequence x_0, \ldots, x_n of elements of X such as $x_0 = x$, $x_n = y$ with $\forall j = 0, \ldots, n-1, x_{j+1} \in a(\{x_j\})$ or $x_j \in a(\{x_{j+1}\})$.

Proof.

i- A is a connected subset of (X, a)

So $\forall C \subset A, C \neq \emptyset$, (1) $F_a(C) \cap A = A$ or (2) $F_a(A - (F_a(C) \cap A)) \cap F_a(C) \cap A \neq \emptyset$.

 $\forall x \in A, F_a^{"}(\{x\}) \cap A \subset A \text{ and } F_a^{"}(\{x\}) \cap A \neq \emptyset.$ Let's show that $F''_a(\{x\}) \cap A$ does not verify (2) so that $F_a(A - (F_a(F_a^{"}(\{x\}) \cap A) \cap A)) \cap F_a(F_a^{"}(\{x\}) \cap A) \cap A = \emptyset.$ We have $F_a(F_a^*(\{x\}) \cap A) \cap A = F_a^*(\{x\}) \cap A$. Indeed, $F''_a(\{x\}) \cap A \subset F''_a(\{x\})$ So $F_a(F_a^{*}(\{x\}) \cap A) \subset F_a^{*}(\{x\})$ ($F_a^{*}(\{x\})$ is closed for F_a) And then $F_a(F_a^{"}(\{x\}) \cap A) \cap A \subset F_a^{"}(\{x\}) \cap A$. We have also $F''_a(\{x\}) \cap A \subset F_a(F''_a(\{x\}) \cap A)$ Then $F_a^{"}(\{x\}) \cap A \cap A \subset F_a(F_a^{"}(\{x\}) \cap A) \cap A$ And then $F_a^{"}(\{x\}) \cap A \subset F_a(F_a^{"}(\{x\}) \cap A) \cap A$. We must show that $F_a(A - (F_a^*(\{x\}) \cap A)) \cap F_a^*(\{x\}) \cap A = \emptyset$. $F^{"}_{a}(\{x\})$ is closed for F' so $\forall y \in X - F^{"}_{a}(\{x\}), y \notin F'_{a}(F^{"}_{a}(\{x\}))$ Then $\forall y \in A - (F_a^{"}(\{x\}) \cap A), F_a(\{y\}) \cap F_a^{"}(\{x\}) = \emptyset$ So $F_a(A - (F_a^*(\{x\}) \cap A)) \cap F_a^*(\{x\}) \cap A = \emptyset$. In result, (2) is not verified so (1) is verified and we have $F_a(F_a^*({x}) \cap$ $A) \cap A = F''_{a}(\{x\}) \cap A = A$ So $A \subset F''_{a}(\{x\})$ And then $\forall x \in A, \forall y \in A, y \in F^{"}_{a}(\{x\})$ and the result.

ii- A is a connected subset of (X, a)

then $\forall x \in A$ and $\forall y \in A$, there exists a chain in (X, a) from {y} to {x} (see i-)

and then $\forall x \in A$ and $\forall y \in A$, there exists a sequence x_0, \dots, x_n of elements of X such as $x_0 = x$, $x_n = y$ with $\forall j = 0, \dots, n-1, x_{j+1} \in a(\{x_j\})$ or $x_j \in a(\{x_{j+1}\})$ (see [7]).

Remarks 21.

1- Generally speaking, the converses of i- and ii- are not true (see previous example 17).

2- If A is a connected subset of (X, a) then, generally speaking, it is possible that there exists $x \in A$ and $y \in A$ such as there does not exist a chain in (A, a_A) from $\{y\}$ to $\{x\}$.

3- If A is a connected subset of (X, a) then, generally speaking, it is possible that there exists $x \in A$ and $y \in A$ such as there does not exist a sequence $x_0 \dots x_n$ of elements of A such as $x_0 = x$, $x_n = y$ with $\forall j = 0, \dots, n-1, x_{j+1} \in a(\{x_j\})$ or $x_j \in a(\{x_{j+1}\})$.

Example 22. Let (X, a) a pretopological space with $X = \{a, b, c\}$ and $A = \{a, b\}$. Let *a* pretopology of descendants defined by the following graph 3 :

Х	R(x)
a	{c}
b	Ø
с	{b}

Graph 3

A is a connected subset of (X, a) but there does not exist a chain in (A, a_A) from {a} to {b}. Morever, there does not exist a sequence x_0, \ldots, x_n of elements of A such as $x_0 = a$, $x_n = b$ with $\forall j = 0, \ldots, n-1, x_{j+1} \in a(\{x_j\})$ or $x_j \in a(\{x_{j+1}\}).$

5. Definition of a Network and Different Closures (see [6])

Definition 23. Let X a non empty set. Let I a countable family of indices. The family $\{ (X, a_i), i \in I \}$ of pretopological spaces is a network on X.

Definition 24. Let X a non empty set. For any pretopologies a_1 and a_2 defined on X, for any subset A of X, we define the three following mappings :

 $(a_1 \cup a_2)(\mathbf{A}) = a_1(\mathbf{A}) \cup a_2(\mathbf{A})$ [union of pretopologies]

- $(a_1 \cap a_2)(A) = a_1(A) \cap a_2(A)$ [intersection of pretopologies]
- $(a_1 \odot a_2)(A) = a_1(a_2(A))$ [composition of pretopologies]

More generally, in a network { $(X, a_i), i \in I$ } such as for any $i \in I$, a_i is of V type, we note F_{ai} the closure according to a_i , F_{\cup} (respectively F_{\cap}) the closure according to $\bigcup_{i \in I} a_i$ (respectively $\bigcap_{i \in I} a_i$), $F_{\cup F}$ (respectively $F_{\cap F}$) the closure according to $\bigcup_{i \in I} F_{ai}$ (respectively $\bigcap_{i \in I} F_{ai}$), F''_{\cup} the closure according to $(\bigcup_{i \in I} a_i)^{"}$.

We define the mapping, denoted $\prod_{i \in I} a_i$, from P(X) onto P(X) by :

 $\forall A \subset X, \prod_{i \in I} a_i(A) = \{ x \in X / \text{ there exists } n \in I \text{ such as } x \in a_n(a_{n-1}(\dots (a_1(A))\dots)) \}.$

And we denote F_{\prod} the closure according to $\prod_{i \in I} a_i$ and $F_{\prod F}$ the closure according to $\prod_{i \in I} F_{ai}$.

Proposition 25 (see [6]). Let $\{ (X, a_i), i \in I \}$ a network such as for any $i \in I$, a_i is of V type.

 $i - F_{\cup} = F_{\cup F} = F_{\prod F} = F_{\prod}.$ $ii - \forall A \subset X, \ F_{\cap}(A) \subset F_{\cap F}(A).$

6. Connected Components in a Network

Definition 26 (see [1]). Let X a non empty set. Let a_1 and a_2 two pretopologies on X.

 a_1 is thinner than a_2 if and only if $\forall A \subset X$, $a_1(A) \subset a_2(A)$.

Remark 27 (see [1]). Let X a non empty set. Let a_1 and a_2 two V type pretopologies on X.

If a_1 is thinner than a_2 then F_{a1} is thinner than F_{a2} .

Proposition 28. Let X a non empty set. Let a_1 and a_2 two V type pretopologies on X such as a_1 thinner than a_2 . Let $A \subset X$ with A non empty.

If A is a connected subset of (X, a_1) then A is a connected subset of (X, a_2) .

Proof.

A is a connected subset of $(X, a_1) \Leftrightarrow \forall C \subset A, C \neq \emptyset, (1) F_{a1}(C) \cap A = A \text{ or } (2) F_{a1}(A - (F_{a1}(C) \cap A)) \cap F_{a1}(C) \cap A \neq \emptyset \text{ (by definition)}.$

Let's show that $\forall C \subset A, C \neq \emptyset, (1') F_{a2}(C) \cap A = A$ or (2') $F_{a2}(A - (F_{a2}(C) \cap A)) \cap F_{a2}(C) \cap A \neq \emptyset$. We note that $F_{a1}(F_{a2}(C) \cap A) \cap A = F_{a2}(C) \cap A$. Indeed, $F_{a2}(C) \cap A \subset F_{a1}(F_{a2}(C) \cap A)$ and $F_{a2}(C) \cap A \subset A$ Then $F_{a2}(C) \cap A \subset F_{a1}(F_{a2}(C) \cap A) \cap A$. Conversely, $F_{a1}(F_{a2}(C) \cap A) \subset F_{a2}(F_{a2}(C) \cap A)$ (Remark 27) Then $F_{a1}(F_{a2}(C) \cap A) \subset F_{a2}(C)$ And then $F_{a1}(F_{a2}(C) \cap A) \cap A \subset F_{a2}(C) \cap A$. We have $F_{a2}(C) \cap A \subset A$ with A connected subset of (X, a_1) , so : $- \text{ if } (1) F_{a1}(F_{a2}(C) \cap A) \cap A = A$ Then $F_{a2}(C) \cap A = A$ (see previous remark) And then (1') is verified. $- \text{ if } (2) F_{a1}(A - (F_{a1}(F_{a2}(C) \cap A) \cap A)) \cap F_{a1}(F_{a2}(C) \cap A) \cap A \neq \emptyset$ Then $F_{a1}(A - (F_{a2}(C) \cap A)) \cap F_{a2}(C) \cap A \neq \emptyset$ (see previous remark) And then $F_{a2}(A - (F_{a2}(C) \cap A)) \cap F_{a2}(C) \cap A \neq \emptyset$ (Remark 27) So (2') is verified.

Proposition 29. Let $\{(X, a_i), i \in I\}$ a network such as for any $i \in I$, a_i is of V type. Let $A \subset X$ with A non empty.

i- The following assertions are equivalent :

(1) A connected subset of $(X, \bigcup_{i \in I} a_i)$

(2) A connected subset of $(X, \bigcup_{i \in I} F_{ai})$

(3) A connected subset of $(X, \prod_{i \in I} a_i)$

(4) A connected subset of $(X, \prod_{i \in I} F_{ai})$.

ii- If A is connected subset of $(X, \bigcap_{i \in I} a_i)$ then A is connected subset of $(X, \bigcap_{i \in I} F_{ai})$.

Proof.

i- Let's show that (1) is équivalent to (2) : A is a connected subset of $(X, \bigcup_{i \in I} a_i)$ $\Leftrightarrow \forall C \subset A, C \neq \emptyset, (1) F_{\cup}(C) \cap A = A \text{ or}$ (2) $F_{\cup}(A - (F_{\cup}(C) \cap A)) \cap F_{\cup}(C) \cap A \neq \emptyset$ (by definition) $\Leftrightarrow \forall C \subset A, C \neq \emptyset, (1) F_{\cup F}(C) \cap A = A \text{ or}$ (2) $F_{\cup F}(A - (F_{\cup F}(C) \cap A)) \cap F_{\cup F}(C) \cap A \neq \emptyset$ (Proposition 25-i) $\Leftrightarrow A \text{ is a connected subset of } (X, \bigcup_{i \in I} F_{ai}).$

Let's show that (1) is équivalent to (4) : A is a connected subset of $(X, \bigcup_{i \in I} a_i)$ $\Leftrightarrow \forall C \subset A, C \neq \emptyset, (1) F_{\cup}(C) \cap A = A \text{ or}$ (2) $F_{\cup}(A - (F_{\cup}(C) \cap A)) \cap F_{\cup}(C) \cap A \neq \emptyset$ (by definition) $\Leftrightarrow \forall C \subset A, C \neq \emptyset, (1) F_{\prod F}(C) \cap A = A \text{ or}$ (2) $F_{\prod F}(A - (F_{\prod F}(C) \cap A)) \cap F_{\prod F}(C) \cap A \neq \emptyset$ (Proposition 25-i) $\Leftrightarrow A \text{ is a connected subset of } (X, \prod_{i \in I} F_{ai})$.

Let's show that (3) is équivalent to (4) : A is a connected subset of $(X, \prod_{i \in I} a_i)$ $\Leftrightarrow \forall C \subset A, C \neq \emptyset, (1) F_{\prod}(C) \cap A = A \text{ or}$ (2) $F_{\prod}(A - (F_{\prod}(C) \cap A)) \cap F_{\prod}(C) \cap A \neq \emptyset$ $\Leftrightarrow \forall C \subset A, C \neq \emptyset, (1) F_{\prod F}(C) \cap A = A \text{ or}$ (2) $F_{\prod F}(A - (F_{\prod F}(C) \cap A)) \cap F_{\prod F}(C) \cap A \neq \emptyset$ (Proposition 25-i) $\Leftrightarrow A$ is a connected subset of $(X, \prod_{i \in I} F_{ai})$. ii- $\bigcap_{i \in I} a_i$ is thinner than $\bigcap_{i \in I} F_{ai}$. Indeed, $\forall A \subset X, \forall i \in I, a_i(A) \subset F_{ai}(A)$ Then $\bigcap_{i \in I} a_i(A) \subset \bigcap_{i \in I} F_{ai}(A)$. and the result according to Proposition 28. **Corollary 30.** Let $\{(X, a_i), i \in I\}$ a network such as for any $i \in I$, a_i is of V type. Let $A \subset X$ with A non empty.

The following assertions are equivalent :

(1) A connected component of $(X, \bigcup_{i \in I} a_i)$

(2) A connected component of $(X, \bigcup_{i \in I} F_{ai})$

(3) A connected component of $(X, \prod_{i \in I} a_i)$

(4) A connected component of $(X, \prod_{i \in I} F_{ai})$.

Proof.

Obvious from Proposition 29-i and Definition 13.

Consequence. Decomposing $(X, \bigcup_{i \in I} a_i)$ into connected components is equivalent to decomposing $(X, \prod_{i \in I} a_i)$ into connected components. So we will propose algorithms to look for connected components in a network in the case of the union and in the case of the intersection of the different pretopologies.

Proposition 31. Let $\{(X, a_i), i \in I\}$ a network such as for any $i \in I$, a_i is of V type. Let $A \subset X$ with A non empty.

i- If there exists $i \in I$ such as A connected subset of (X, a_i) then A is connected subset of $(X, \bigcup_{i \in I} a_i)$.

ii- If A is connected subset of $(X, \bigcap_{i \in I} a_i)$ then for any $i \in I$, A is connected subset of de (X, a_i) .

Proof.

i- $\forall i \in I$, a_i is thinner than $\bigcup_{i \in I} a_i$. We get the result according to Proposition 28.

ii- $\forall i \in I$, $\bigcap_{i \in I} a_i$ is thinner than a_i . We get the result according to Proposition 28.

Remark 32. The converses of i- and ii- are not true generally speaking.

Examples 33.

i- Let { (X, a_i), $i \in I$ } a network with X = { a, b, c }, I = { 1, 2 }, a_1 and a_2 pretopologies of descendants defined respectively by the following graphs 4 and 5 :

Х	R(x)
a	{b}
b	Ø
с	Ø

Gra	ph	4
ura	pn	Ŧ

X	R(x)
a	Ø
b	Ø
С	{b}

Graph D	(Зr	ap	h	5
---------	---	----	----	---	---

X is connected subset of $(X, \bigcup_{i \in I} a_i)$ but X is not connected subset of (X, a_1) and X is not connected subset of (X, a_2) .

ii- Let { (X, a_i), $i \in I$ } a network with X = { a, b, c }, I = { 1, 2 }, a_1 and a_2 respectively pretopology of ascendants and pretopology of descendants defined by the following graph 6 :

Х	R(x)
a	{c}
b	{c}
с	Ø

(1		$^{\circ}$
(iron	h i	h
(Tran	n '	

X is connected subset of (X, a_1) and connected subset of (X, a_2) but X is not connected subset of $(X, \bigcap_{i \in I} a_i)$. Indeed, $(a_1 \cap a_2)(\{a\}) = a_1(\{a\}) \cap a_2(\{a\}) = \{a\} = F_{a1 \cap a2}(\{a\})$ with $F_{a1 \cap a2}(\{a\}) \neq X$ and $F_{a1 \cap a2}(X - \{a\}) \cap \{a\} = \{b, c\} \cap \{a\} = \emptyset$.

Consequence. It does not seem possible to find a more judicious algorithm from the study of each a_i for the study of $\bigcap_{i \in I} a_i$. We will take into account only the case of $\bigcup_{i \in I} a_i$.

Proposition 34. Let $\{(X, a_i), i \in I\}$ a network such as for any $i \in I$, a_i is of V type. Let $\{S_k, k \in K\}$ a family of subsets non empty of X such as :

 $1-\bigcup_{k\in K}S_k=X$

2- $\forall k \in K$, there exists $\{A_j, j \in J\}$ a family of subsets non empty of X such

2-1- $S_k = \bigcup_{j \in J} A_j$ 2-2- $\forall j \in J$, there exists $i \in I$, A_j connected component of (X, a_i) 2-3- $\forall j \in J$, $\forall j' \in J$, there exists a sequence $j_0 \dots j_r$ of elements of J such as $j_0 = j$, $j_r = j'$ and $\forall l = 0, \dots, r-1$, $A_{jl} \cap A_{jl+1} \neq \emptyset$ 2-4- $\forall A' \subset X, A' \notin \{A_j, j \in J\}$, if there exists $i \in I$ such as A' connected

component of (X, a_i) then $A' \cap S_k = \emptyset$.

We have :

as:

i- $\forall k \in K, S_k \text{ is a connected subset of } (X, \bigcup_{i \in I} a_i).$

ii- If for any $i \in I$, a_i is of V_S type, $\{S_k, k \in K\}$ is the family of connected component of $(X, \bigcup_{i \in I} a_i)$.

iii- $\{S_k, k \in K\}$ is a partition of X.

Proof.

i- $\forall j \in J$, there exists $i \in I$, A_j connected component of (X, a_i) then $\forall j \in J$, A_j is connected subset of $(X, \bigcup_{i \in I} a_i)$ (Proposition 31-i).

Morever, the union of two connected subsets with a non empty intersection is a connected subset (see [1]) hence the result.

ii- $\forall k \in K$, S_k is a connected subset of $(X, \bigcup_{i \in I} a_i)$ (see i-). Let's show that S_k is connected component of $(X, \bigcup_{i \in I} a_i)$.

If S_k is not connected component of $(X, \bigcup_{i \in I} a_i)$ then there exists B such as $S_k \subset B \subset X$ with $S_k \neq B$ and such as B is a connected subset of $(X, \bigcup_{i \in I} a_i)$.

But $\bigcup_{i \in I} a_i$ is of V_S type (see [1]), so there exists B such as $S_k \subset B \subset X$ with $S_k \neq B$ and $\forall x \in B$ and $\forall y \in B$, there exists a sequence x_0, \dots, x_n of elements of X such as $x_0 = x, x_n = y$ with $\forall l = 0, \dots, n-1, x_{l+1} \in \bigcup_{i \in I} a_i(\{x_l\})$ or $x_l \in \bigcup_{i \in I} a_i(\{x_{l+1}\})$ (Proposition 20-ii).

Then there exists B such as $S_k \subset B \subset X$ with $S_k \neq B$ and $\forall x \in S_k$ and $\forall y \in B - S_k$, there exists a sequence x_0, \dots, x_n of elements of X such as $x_0 = x$, $x_n = y$ with $\forall l = 0, \dots, n-1, x_{l+1} \in \bigcup_{i \in I} a_i(\{x_l\})$ or $x_l \in \bigcup_{i \in I} a_i(\{x_{l+1}\})$

Then there exists B such as $S_k \subset B \subset X$ with $S_k \neq B$ and there exists $x \in S_k$ and there exists $y \in B - S_k$ such as $x \in \bigcup_{i \in I} a_i(\{y\})$ or $y \in \bigcup_{i \in I} a_i(\{x\})$

So there exists B such as $S_k \subset B \subset X$ with $S_k \neq B$ and there exists $x \in S_k$, there exists $y \in B - S_k$ and there exists $i \in I$ such as $x \in a_i(\{y\})$ or $y \in a_i(\{x\})$

And then there exists B such as $S_k \subset B \subset X$ with $S_k \neq B$ and there exists $x \in S_k$, there exists $y \in B - S_k$ and there exists $i \in I$ such as $\{x, y\}$ is connexted subset of (X, a_i) (Proposition 15-ii)

And there exists A' such as $\{x, y\} \subset A' \subset X$ and A' connected component of (X, a_i) with $x \in A' \cap S_k$ and $A' \notin \{A_j, j \in J\}$

So there exists A' such as $\{x, y\} \subset A' \subset X$ and A' connected component of (X, a_i) with $A' \cap S_k \neq \emptyset$ and $A' \notin \{A_j, j \in J\}$

Which is in contradiction with 2-4.

In result, S_k is a connected component of $(X, \bigcup_{i \in I} a_i)$.

iii- It is sufficient to show that $\forall k \in K, \forall k' \in K$ with $k \neq k', S_k \cap S_{k'} = \emptyset$ which is ensured by 2.

Remark 35. Generally speaking, if there exists $i \in I$, a_i is of V type but not of V_S type then S_k is not connected component of $(X, \bigcup_{i \in I} a_i)$.

Example 36. Let $\{ (X, a_i), i \in I \}$ a network with $X = \{ a, b, c, d, e \}, I = \{ 1, 2 \}, a_1$ and a_2 prétopologies of ascendant-descendants defined respectively

by the following graphs 7 and 8 :

Х	R(x)
a	{ b, c }
b	{a}
с	{b}
d	{e}
е	{d}

Graph 7

0.1	apii i
Х	R(x)
a	Ø
b	Ø
с	{e}
d	Ø
e	{b}

Graph 8

Let $A_1 = \{a, b, c\}$. A_1 is connected component of (X, a_1) . Let $A_2 = \{a\}, A_3 = \{b\}, A_4 = \{c\}$. A_2, A_3, A_4 are connected component of (X, a_2) . Let $S = A_1 \cup A_2 \cup A_3 \cup A_4$. S checks the conditions of the Proposition so S is connected subset of $(X, \bigcup_{i \in I} a_i)$ but S is not connected component of $(X, \bigcup_{i \in I} a_i)$. $\bigcup_{i \in I} a_i$). Indeed, X is connected component of $(X, \bigcup_{i \in I} a_i)$.

Remark 37. Generally speaking, $S_k \subset F^{"}_{\cup}(S_k)$ with $S_k \neq F^{"}_{\cup}(S_k)$.

Example 38. See the previous example 36. Indeed, the connected component of (X, a_1) are $A_1 = \{a, b, c\}, A_5 = \{d, e\}$. The connected component of (X, a_2) are $A_2 = \{a\}, A_3 = \{b\}, A_4 = \{c\}, A_6 = \{d\}$ and $A_7 = \{e\}$. So we have $S_1 = \{a, b, c\}$ and $S_2 = \{d, e\}$ and then $F_{\cup}(S_1) = X$. The result is $S_1 \subset F''_{\cup}(S_1)$ with $S_1 \neq F''_{\cup}(S_1)$.

Remark 39. $\forall k \in K, F''_{\cup}(S_k)$ is a connected subset of $(X, \bigcup_{i \in I} a_i)$ (Proposition 34-i and Propositin 5.5 of [8]).

Consequence. The Proposition 5.13 of [8] can be applied iteratively to $\{S_k, k \in K\}$ because it is a family of connected subset of $(X, \bigcup_{i \in I} a_i)$ which is a partition of X. So we can build a greatest partition noted $\{F^*_k, k \in K^*\}$ such as $\forall k \in K^*, F^*_{\cup}(F^*_k) = F^*_k$. Indeed, we can apply the next Proposition (see Proportion 5.19 of [8]).

Proposition 40. Let $\{(X, a_i), i \in I\}$ a network such as for any $i \in I$, a_i is of V type. The same conditions apply as in Proposition 34.

Let { F_k^* , $k \in K^*$ } the family which is iteratively built from { S_k , $k \in K$ } such as $\forall k \in K^*$, $F_{\cup}^{"}(F_k^*) = F_k^*$. (see Proposition 5.13 of [8]).

Let $A \subset X$ with A non empty.

A is connected component of $(X, \bigcup_{i \in I} a_i)$

\Leftrightarrow

1- It exists $J_A \subset K^*$ such as $A = \bigcup_{j \in J_A} F_{*j}$ And 2 - $\forall C \subset A, C \neq \emptyset, C = \bigcup_{j \in J} F_{*j}$ with $J \subset J_A$, we have $F_{\cup}(C) \cap A = A$ or $F_{\cup}(A - (F_{\cup}(C) \cap A)) \cap F_{\cup}(C) \cap A \neq \emptyset$

And 3- $\forall B, A \subset B \subset X$ with $A \neq B, B = \bigcup_{j \in J_B} F *_j$ with $J_A \subset J_B \subset K^*$ and $J_A \neq J_B$, there exists $C \subset B, C \neq \emptyset, C = \bigcup_{j \in J} F *_j$ with $J \subset J_B$, such as $F_{\cup}(C) \cap B \neq B$ and $F_{\cup}(B - (F_{\cup}(C) \cap B)) \cap F_{\cup}(C) \cap B = \emptyset$.

Proof.

See Proposition 34, Propositions 5.13 and 5.19 of [8].

7. Conclusion

Finally, if X is a finite set, we can give two algorithms to find connected components of $(X, \bigcup_{i \in I} a_i)$ (i.e. of $(X, \prod_{i \in I} a_i)$).

In the case where for any i, a_i is of V type, we can use the first algorithm : - For any $i \in I$, find the connected components of (X, a_i)

- Build { $S_k, k \in K$ } by joining step by step all connected components with a non empty intersection (Proposition 34)

- For any $k \in \mathbf{K}$, compute $\mathbf{F}^{"} \cup (\mathbf{S}_{k})$

- while there exists $k \in K$ such as $S_k \subset F''_{\cup}(S_k)$ with $S_k \neq F''_{\cup}(S_k)$, do :

- build { $F_{k'}$, $k' \in K'$ } by joining step by step all $F''_{\cup}(S_k)$ with a non empty intersection (see [8])

-K = K'

- For any $k' \in \mathbf{K}'$, k = k' and $\mathbf{S}_k = \mathbf{F}_{k'}$

- For any $k \in \mathbf{K}$, compute $\mathbf{F}^{"}_{\cup}(\mathbf{S}_{k})$

- End while

- $K^* = K$

- For any $k \in \mathbf{K}$, k' = k and $\mathbf{F}^*_{k'} = \mathbf{S}_k$

- build the subset defined as in Proposition 40. There are the connected components of $(X, \bigcup_{i \in I} a_i)$ (i.e. $(X, \prod_{i \in I} a_i)$).

In the case where for any $i \in I$, a_i is of V_S type, we can use the second algorithm :

- For any $i \in I$, find the connected components of (X, a_i)

- Build { $S_k, k \in K$ } by joining step by step all connected components with a non empty intersection. There are the connected components of $(X, \bigcup_{i \in I} a_i)$ (i.e. $(X, \prod_{i \in I} a_i)$) (Proposition 34-ii).

References

- Z. Belmandt, Manuel de prétopologie et ses applications, Hermès, France, 1993.
- [2] M. Dalud-Vincent, Modèle prétopologique pour une méthodologie d'analyse de réseaux. Concepts et algorithmes, Ph.D. Thesis, Lyon 1 University, France, 1994.
- [3] M. Dalud-Vincent, Strongly connected components of a network in Pretopology, International Journal of Pure and Applied Mathematics, 120 (3) (2018), 291-301. https://doi.org/10.12732/ijpam.v120i3.1
- [4] M. Dalud-Vincent, Greatest strongly connected subspaces of a network in Pretopology, *Communications in Applied Analysis*, 23 (2) (2019), 249-266. https://doi.org/10.12732/caa.v23i2.2
- [5] M. Dalud-Vincent, M. Brissaud, M. Lamure, Pretopology as an extension of graph theory: the case of strong connectivity, *International Journal of Applied Mathematics*, 5 (4) (2001), 455-472.
- [6] M. Dalud-Vincent, M. Brissaud, M. Lamure, Closed sets and closures in pretopology, *International Journal of Pure and Applied Mathematics*, 50 (3) (2009), 391-402.
- M. Dalud-Vincent, M. Brissaud, M. Lamure, Pretopology, Matroïdes and Hypergraphs, International Journal of Pure and Applied Mathematics, 67 (4) (2011), 363-375.
- [8] M. Dalud-Vincent, M. Brissaud, M. Lamure, Connectivities and Partitions in a Pretopological Space, *International Mathematical Forum*, 6 (45) (2011), 2201-2215.
- [9] M. Dalud-Vincent, M. Lamure, Connectivities for a Pretopology and its inverse, International Journal of Pure and Applied Mathematics, 86 (1) (2013), 43-54. https://doi.org/10.12732/ijpam.v86i1.5
- [10] M. Dalud-Vincent, M. Lamure, Connectivities in the case of an idempotent Pretopology, International Journal of Pure and Applied Mathematics, 106 (3) (2016), 923-936. https://doi.org/10.12732/ijpam.v106i3.17

 [11] M. Dalud-Vincent, M. Lamure, Connectivities for a symmetric Pretopology, International Journal of Pure and Applied Mathematics, 111 (1) (2016), 77-90. https://doi.org/10.12732/ijpam.v111i1.8

Received: April 25, 2021; Published: May 23, 2021