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Abstract

Mathematical analysis of nonlinear models in epidemiology has gen-
erated a deep interest in gaining insights into the mechanisms that un-
derlie hepatitis C virus (HCV) infections. In this article, we provide a
study of a chronic HCV infection model with immune response, incor-
porating the effect of dendritic cells (DC) and cytotoxic T lymphocytes
(CTL). Considering very recent developments in the literature related
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to the Homotopy Analysis Method (HAM), we calculate the explicit
series solutions of the HCV model, focusing our analysis on a particu-
lar set of dynamical variables. An optimal homotopy analysis approach
is used to improve the computational efficiency of HAM by means of
appropriate values for a convergence control parameter, which greatly
accelerates the convergence of the series solutions. The approximated
analytical solutions, with the variation of a parameter representing the
expansion rate of CTL, are used to compute density plots, which allow
us to discuss additional dynamical features of the model.

Mathematics Subject Classification: Primary 34A34; Secondary 92B05,
92C60, 34A05

Keywords: HCV infection model, Nonlinear differential equations, Ex-
plicit series solutions, Optimal homotopy analysis procedures

1 Motivation and preliminaries

Hepatitis C is an infectious liver disease that represents a significant global
health problem. It is estimated by the World Health Organization (WHO)
that around 150 million people are persistently infected with the Hepatitis C
Virus (HCV) and are at risk of developing chronic liver disease, cirrhosis and
hepatocellular carcinoma [1, 2]. The virus was identified in 1989, but its world
wide presence suggests that it has been active for a much longer period. The
new HCV infections per year occur in two basic stages - acute and chronic
infections. The designations ‘acute’ and ‘chronic’ correspond to the duration
and not to the severity of the disease. Acute infections have approximately
1% mortality rate [3, 4] and usually last up to 6 months. Those that last
longer are considered chronic infections. It is estimated that around 80%
of HCV infections develop into the chronic stage and can last asymptomatic
for more than 20 years [3, 5]. In this context, hepatitis C is sometimes called
‘silent epidemic’, due to the long period of asymptomatic infections that makes
difficult the diagnosis of the disease [3, 4]. Recently, a review of various existing
models for the dynamics of hepatitis C infection has been presented based on
different dynamical processes described in the literature [6].

In this article, our motivation is to provide insights into the study of a
mathematical model with immune response for chronic HCV infection pro-
posed by Li et al. in [7]. As pointed out in [8], given the importance of
mathematical models in epidemiology, a great deal of numerical algorithms for
approximating solutions have been used in the literature. Without doubt, the
numerical algorithms have been particularly important in the study of complex
dynamical systems. However, they allow us to analyze the dynamics at dis-
crete points only, thereby making it impossible to obtain continuous solutions.
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It is crucial to complement numerical analysis with the techniques for analytic
approximation of solutions. Thereby, in recent years there has been a growing
interest in obtaining continuous solutions for nonlinear dynamical systems by
means of analytical or semi-analytical techniques [9, 10]. Such methods should
preferably possess three fundamental properties: (i) their efficiency should not
be influenced by the presence of small or large physical parameters; (ii) they
should allow applications to different types of equations with the flexibility in
choosing the expression for solution in the form of higher-order approxima-
tions; and (iii) the convergence of the series could be conveniently controlled
by choosing the values of a convergence control parameter from an appropri-
ate range. One such general analytical technique, used to get convergent series
solutions of strongly nonlinear problems, is the so-called Homotopy Analysis
Method (HAM), initially proposed by Liao [11, 12].

Due to its generality and versatility, homotopy analysis has been success-
fully applied to a wide range of nonlinear problems. In our work, we are going
to carry out a modification of Liao’s method, named as Step Homotopy Analy-
sis Method (SHAM), which can be also applied to strongly nonlinear equations
for large values of time. The approximated analytical solutions can motivate
the discussion of additional features of the dynamics.

The paper is organized as follows. In Section 2, we present a brief overview
of the chronic HCV infection model proposed in [7]. The structure of the ho-
motopy analysis technique and the analytic solutions of the HCV model are
discussed in Section 3. In the core of the analytical part of our approach, we
construct explicit series solutions for the dynamical variables which are used
for generating density plots and for exploring additional dynamic features of
the model. Conducting an optimal homotopy analysis to improve the compu-
tational efficiency of the method, we present the procedure to compute optimal
values of the auxiliary control parameter h based on squared residual errors,
which ensures a fast convergence. We conclude the article with a summary of
our analysis and final considerations.

2 Mathematical model for the HCV infection

We analyze the chronic HCV infection model with immune response proposed
in [7], which includes the effect of Dendritic Cells (DC) and Cytotoxic T Lym-
phocytes (CTL) ([13]-[15]). More precisely, this model considers two biological
effects:

(i) the effect of HCV infection, with the dynamical variables healthy hepa-
tocytes (T ) and infected hepatocytes (T 1);

(ii) the effect of immune system on HCV infection, with three dynamical vari-
ables, namely, non-activated DC (D), which do not present antigen, loaded
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and activated DC (D1), which have taken up antigen and display it, and CTL
(C).

Taking in consideration the assumptions stated in [7], it is derived the
following model 

dT
dt

= rT
(

1− T+T 1

K

)
− βTT 1

dT 1

dt
= βTT 1 − d1T 1 − β2T

1C

dD
dt

= λ− δ1D − αDT 1

dD1

dt
= αDT 1 − δ2D1

dC
dt

= ηD1C − β3T
1C − µC

. (1)

Values and descriptions of the parameters of model (1), which were obtained
from [7], are explained in the following table (for more details, see [7] and
references therein).

Parameter Value Description
K 10 Carrying capacity of infected hepatocytes
β 2 Rate of infection of healthy hepatocytes
d1 0.1 Death rate of infected hepatocytes
β2 1 Rate of lyse of infected hepatocytes by variable C
λ 1 Constant production rate of variable D
δ1 0.1 Death rate of variable D
α 0.2 Activation rate of variable D1

δ2 1.5 Death rate of variable D1

β3 0.5 Removal rate of variable C
µ 0.1 Death rate of variable C
r 0.91 Intrinsic proliferation rate of healthy hepatocytes
η 1.0 ≤ η ≤ 1.038 Expansion rate of variable C (Control Parameter)

Table 1: Values and descriptions of the parameters of model (1)

3 Structure of the homotopy analysis technique

and the analytic solutions

The analytical approach of HAM ([16]) will be used in a sequence of intervals,
giving rise to the step homotopy analysis method (SHAM). In the following
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paragraph, we outline the description of SHAM applied to the chronic HCV
infection model (1).

3.1 Explicit series expansion solutions

Based on the primary definitions of the HAM, we are able to perform an
analytical approach of the HCV infection model. Our goal is to obtain the
explicit series solutions for the state variables T , T 1, D, D1 and C. Let us
consider the initial conditions

T0(t) = αT , T
1
0 (t) = αT 1 , D0(t) = αD, D

1
0(t) = αD1 , C0(t) = αC ,

as our initial approximations of T (t), T 1(t), D(t), D1(t) and C(t), respectively.
For our present analysis, we set the following values for the initial conditions:

αT = 2.068, αT 1 = 1.062, αD = 6.297, αD1 = 0.676 and αC = 6.406.

In the context of HAM, there is freedom to choose auxiliary linear operators
and we are going to simply consider

L[φi(t; q)] =
∂φi(t; q)

∂t
, i = 1, ..., 5,

where L(ci) = 0 and ci (i = 1, ..., 5) are integral constants. The nonlinear
operators for the HCV infection model are

N1[φ1(t; q), φ2(t; q), φ3(t; q), φ4(t; q), φ5(t; q)] =
∂φ1(t; q)

∂t

−rφ1(t; q) +
r

K
φ2
1(t; q) +

r

K
φ1(t; q)φ2(t; q) + βφ1(t; q)φ2(t; q),

N2[φ1(t; q), φ2(t; q), φ3(t; q), φ4(t; q), φ5(t; q)] =
∂φ2(t; q)

∂t
−βφ1(t; q)φ2(t; q) + d1φ2(t; q) + β2φ2(t; q)φ5(t; q),

N3[φ1(t; q), φ2(t; q), φ3(t; q), φ4(t; q), φ5(t; q)] =
∂φ3(t; q)

∂t
− λ

+δ1φ3(t; q) + αφ2(t; q)φ3(t; q),

N4[φ1(t; q), φ2(t; q), φ3(t; q), φ4(t; q), φ5(t; q)] =
∂φ4(t; q)

∂t
−αφ2(t; q)φ3(t; q) + δ2φ4(t; q)

and N5[φ1(t; q), φ2(t; q), φ3(t; q), φ4(t; q), φ5(t; q)] =
∂φ5(t; q)

∂t
−ηφ4(t; q)φ5(t; q) + β3φ2(t; q)φ5(t; q) + µφ5(t; q).
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The zeroth-order deformation equations have the form

(1− q)L[φ1(t; q)− T0(t)] = qhN1[φ1(t; q), φ2(t; q), φ3(t; q), φ4(t; q), φ5(t; q)],

(1− q)L[φ2(t; q)− T 1
0 (t)] = qhN2[φ1(t; q), φ2(t; q), φ3(t; q), φ4(t; q), φ5(t; q)],

(1− q)L[φ3(t; q)−D0(t)] = qhN3[φ1(t; q), φ2(t; q), φ3(t; q), φ4(t; q), φ5(t; q)],

(1− q)L[φ4(t; q)−D1
0(t)] = qhN4[φ1(t; q), φ2(t; q), φ3(t; q), φ4(t; q), φ5(t; q)],

(1− q)L[φ5(t; q)− C0(t)] = qhN5[φ1(t; q), φ2(t; q), φ3(t; q), φ4(t; q), φ5(t; q)],
(2)

with initial conditions

φ1(0; q) = 2.068, φ2(0; q) = 1.062, φ3(0; q) = 6.297,

φ4(0; q) = 0.676 and φ5(0; q) = 6.406.

Solutions to the zeroth-order equations (2) for the values q = 0 and q = 1 are

φ1(t; 0) = T0(t), φ2(t; 0) = T 1
0 (t), φ3(t; 0) = D0(t),

φ4(t; 0) = D1
0(t), φ5(t; 0) = C0(t)

(3)

and φ1(t; 1) = T (t), φ2(t; 1) = T 1(t), φ3(t; 1) = D(t),

φ4(t; 1) = D1(t), φ5(t; 1) = C(t),
(4)

respectively. By increasing q from 0 to 1, the functions φi(t; q) (i = 1, ..., 5)
vary from T0(t), T

1
0 (t), D0(t), D

1
0(t) and C0(t) to T (t), T 1(t), D(t), D1(t) and

C(t), respectively. Expanding each of the functions φi(t; q) (i = 1, ..., 5) in
MacLaurin series with respect to q, we obtain the homotopy-Maclaurin series

φ1(t; q) = T0(t) +
+∞∑
m=1

Tm(t)qm, φ2(t; q) = T 1
0 (t) +

+∞∑
m=1

T 1
m(t)qm,

φ3(t; q) = D0(t) +
+∞∑
m=1

Dm(t)qm, φ4(t; q) = D1
0(t) +

+∞∑
m=1

D1
m(t)qm,

φ5(t; q) = C0(t) +
+∞∑
m=1

Cm(t)qm, where

(5)
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Tm(t) = 1
m!

∂mφ1(t;q)
∂qm

∣∣∣
q=0

, T 1
m(t) = 1

m!
∂mφ2(t;q)
∂qm

∣∣∣
q=0

,

Dm(t) = 1
m!

∂mφ3(t;q)
∂qm

∣∣∣
q=0

, D1
m(t) = 1

m!
∂mφ4(t;q)
∂qm

∣∣∣
q=0

,

and Cm(t) = 1
m!

∂mφ5(t;q)
∂qm

∣∣∣
q=0

.

(6)

The auxiliary parameter h is chosen properly to ensure the convergence of all
series for q = 1. The homotopy series solutions are obtained from equations
(3)-(6).

T (t) = T0(t) +
+∞∑
m=1

Tm(t), T 1(t) = T 1
0 (t) +

+∞∑
m=1

T 1
m(t),

D(t) = D0(t) +
+∞∑
m=1

Dm(t), D1(t) = D1
0(t) +

+∞∑
m=1

D1
m(t)

and C(t) = C0(t) +
+∞∑
m=1

Cm(t).

(7)

Differentiating the zeroth-order Equations (2) m times and using the properties

Dm(φi) = xi,m,

Dmqkφi = Dm−k(φi) =

{
xi,m−k, 0 ≤ k ≤ m,
0, otherwise

Dm(φ2
1) =

m∑
k=0

xi,m−k xi,k,

Dm(φiψi) =
m∑
k=0

Dk(φi)Dm−k(ψi) =
m∑
k=0

xi,k yi,m−k,

where D stands for the mth-order derivative with respect to the homotopy
parameter q and −→u m−1 (t) =

(
Tm−1(t), T

1
m−1(t), Dm−1(t), D

1
m−1(t), Cm−1(t)

)
,
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we obtain the mth-order deformation equations

L[Tm(t)− χmTm−1(t)] = hR1,m[−→u m−1 (t)]

L[T 1
m(t)− χmT 1

m−1(t)] = hR2,m[−→u m−1 (t)],

L[Dm(t)− χmDm−1(t)] = hR3,m[−→u m−1 (t)],

L[D1
m(t)− χmD1

m−1(t)] = hR4,m[−→u m−1 (t)],

L[Cm(t)− χmCm−1(t)] = hR5,m[−→u m−1 (t)],

(8)

where

χm =

{
0, for m ≤ 1
1, for m > 1

,

subject to the initial conditions

Tm(0) = 0, T 1
m(0) = 0, Dm(0) = 0, D1

m(0) = 0, Cm(0) = 0. (9)

Then we have
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R1[
−→u m−1] = dTm−1(t)

dt
− rTm−1(t)

+ r
K

m−1∑
k=0

Tm−1−k(t)Tk(t) + r
K

m−1∑
k=0

Tm−1−k(t)T
1
k (t)

+β
m−1∑
k=0

Tm−1−k(t)T
1
k (t),

R2[
−→u m−1] =

dT 1
m−1(t)

dt
− β

m−1∑
k=0

Tm−1−k(t)T
1
k (t)

+d1T
1
m−1(t) + β2

m−1∑
k=0

T 1
m−1−k(t)Ck(t),

R3[
−→u m−1] = dDm−1(t)

dt
− (1− χm)λ+ δ1Dm−1(t)

+α
m−1∑
k=0

Dm−1−k(t)T
1
k (t),

R4[
−→u m−1] =

dD1
m−1(t)

dt
− α

m−1∑
k=0

Dm−1−k(t)T
1
k (t)

+δ2D
1
m−1(t),

and R5[
−→u m−1] = dCm−1(t)

dt
− η

m−1∑
k=0

D1
m−1−k(t)Ck(t)

+β3

m−1∑
k=0

T 1
m−1−k(t)Ck(t) + µCm−1(t).

Solutions of linear mth-order deformation equations (8), satisfying the initial
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conditions (9) for all m ≥ 1, are given by

Tm(t) = χmTm−1(t) + h

t∫
0

R1,m[−→u m−1 (t)]dτ ,

T 1
m(t) = χmT

1
m−1(t) + h

t∫
0

R2,m[−→u m−1(t)]dτ ,

Dm(t) = χmDm−1(t) + h

t∫
0

R3,m[−→u m−1(t)]dτ ,

D1
m(t) = χmD

1
m−1(t) + h

t∫
0

R4,m[−→u m−1(t)]dτ ,

Cm(t) = χmCm−1(t) + h

t∫
0

R5,m[−→u m−1(t)]dτ .

Truncating the homotopy series (7) at the M th step, we obtain the M th-order
approximate solutions in the form

TM(t) = T0(t) +
M∑
m=1

Tm(t), T 1
M(t) = T 1

0 (t) +
M∑
m=1

T 1
m(t),

DM(t) = D0(t) +
M∑
m=1

Dm(t), D1
M(t) = D1

0(t) +
M∑
m=1

D1
m(t)

and CM(t) = C0(t) +
M∑
m=1

Cm(t).

(10)

The exact solutions of (1) are obtained by passing to the limit as M →∞,

T (t) = lim
M→+∞

TM(t), T 1(t) = lim
M→+∞

T 1
M(t),

D(t) = lim
M→+∞

DM(t), D1(t) = lim
M→+∞

D1
M(t),

C(t) = lim
M→+∞

CM(t).
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In order to obtain approximations to solutions for large values of t, we use
the SHAM, which corresponds to the application of the HAM on a sequence
of intervals with the time step ∆t considering, as an illustrative example, the
eighth order approximations defined by equations (11):

T (t) = T0(t) +
8∑

m=1

Tm(t), T 1(t) = T 1
0 (t) +

8∑
m=1

T 1(t),

D(t) = D0(t) +
8∑

m=1

Dm(t), D1(t) = D1
0(t) +

8∑
m=1

D1
m(t),

C(t) = C0(t) +
8∑

m=1

Cm(t).

(11)

In this case, initial values for T0, T
1
0 , D0, D

1
0 and C0 change at each subinterval,

i.e., T (t∗) = T0, T
1(t∗) = T 1

0 , D(t∗) = D0, D
1(t∗) = D1

0 and C(t∗) = C0, with
initial conditions Tm(t∗) = T 1

m(t∗) = Dm(t∗) = D1
m(t∗) = Cm(t∗) = 0 satisfied

for all m ≥ 1. As a consequence, approximate solutions are given by

T (t) = T (t∗) +
8∑

m=1

Tm(t− t∗), T 1(t) = T 1(t∗) +
8∑

m=1

T 1
m(t− t∗),

D(t) = D(t∗) +
8∑

m=1

Dm(t− t∗), D1(t) = D1(t∗) +
8∑

m=1

D1
m(t− t∗),

C(t) = C(t∗) +
8∑

m=1

C(t− t∗).

(12)
In the beginning, only the initial data at t = 0 are known for the variables

T (t), T 1(t), D(t), D1(t) and C(t). Corresponding values at t = t∗ at each step
are obtained by using the values of approximate solutions computed at the
previous step, thus ensuring smoothness of solutions.

3.2 The convergence-control and the optimal value of
h: optimal homotopy analysis procedures for the
solutions

Using an optimal approach, the homotopy analysis method might be applied
to solve complicated differential equations with strong nonlinearity. With the
purpose of determining the optimum value of h, an exact Squared Residual
Error (SRE) is defined and efficiently used to find optimal convergence values
for the convergence control parameter h, corresponding to dynamical variables
T and D.

It is found that this optimal homotopy analysis approach greatly accelerates
the convergence of series solution.
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3.2.1 Squared residual error and the optimal value of h

A procedure to check the convergence of a homotopy-series solution is to sub-
stitute this series into the original governing equations and initial conditions,
and then to evaluate the corresponding squared residual errors - the more
quickly the residual error decays to zero, the faster the homotopy-series con-
verges. In this context, and as an illustration, an error analysis is performed
in the following lines for the dynamical variables T and D.

Taking the expressions (10), let us consider ϕT (t, hT ) = TM(t), ϕT 1 (t, hT 1) =
T 1
M(t), ϕD (t, hD) = DM(t), ϕD1 (t, hD1) = D1

M(t) and ϕC (t, hC) = CM(t).
With the substitution of these solutions into Eqs. (1), we are able to construct
Residual Error (RE) functions as follows ((13)-(15)):

RET (hT , t) =
∂ϕT (t, hT )

∂t
− rϕT (t, hT ) (13)

−rφT (t, hT ) +
r

K
φ2
T (t, hT ) +

r

K
φT (t, hT )φT 1(t, hT 1)

+βφT (t;hT )φT 1(t, hT 1),

RET 1 (hT 1 , t) =
∂ϕT 1 (t, hT 1)

∂t
− βφT (t, hT )φT 1(t, hT 1) (14)

+d1φT 1(t, hT 1) + β2φT 1(t, hT 1)φC(t, hC),

RED (hD, t) =
∂ϕD (t, hD)

∂t
− λ+ δ1φD(t, hD) + αφT 1(t, hT 1)φD(t, hD), (15)

RED1 (hD1 , t) =
∂ϕD1 (t, hD1)

∂t
− αφT 1(t, hT 1)φD(t, hD) + δ2φD1(t, hD1) (16)

REC (hC , t) =
∂ϕC (t, hC)

∂t
− ηφD1(t, hD1)φC(t, hC) + (17)

+β3φT 1(t, hT 1)φC(t, hC) + µφC(t, hC)

In 2007, Yabushita et al. [17] suggested an optimization method for con-
vergence control parameters. Their work is based on the Squared Residual
Error. Inspired by this approach, and following the studies carried out in
[18], we consider the exact Squared Residual Error (SRE) for the M th-order
approximations to be

SRET (hT ) =

1∫
0

[RET (hT , t)]
2 dt, (18)
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SRET 1 (hT 1) =

1∫
0

[RET 1 (hT 1 , t)]2 dt, (19)

SRED (hD) =

1∫
0

[RED (hD, t)]
2 dt, (20)

SRED1 (hD1) =

1∫
0

[RED1 (hD1 , t)]2 dt, (21)

SREC (hC) =

1∫
0

[REC (hC , t)]
2 dt. (22)

SRET
↗

SRED
↗

-0.75 -0.7 -0.65 -0.6 -0.55
0

1.×10-6

2.×10-6

3.×10-6

h

S
R
E

Figure 1: Exact Squared Residual Error functions, SRET and SRED versus h,
corresponding to the 8th-order approximation (r = 0.91 and η = 1.013). Each
optimum value of h gives rise to the minimum value of the SRE.

Variable Optimal value h∗ Minimum value of SRE (8th-order approximation)
T −0.631204 1.84176× 10−6

D −0.676395 1.61835× 10−7

Table 2: Optimal values h∗T and h∗D and minima of the respective squared
residual error functions, corresponding to the dynamical regime presented in
Fig. 1.

Values of hT , hT 1 , hD, hD1 and hC for which SRET (hT ), SRET 1 (hT 1),
SRED (hD), SRED1 (hD1) and SREC (hC) are minimum can be obtained. For
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6.2

6.6

7

t

D

Figure 2: The SHAM analytical solutions of T (t) andD(t) of the HCV infection
model, considering r = 0.91 and η = 1.013.

a given M th-order of approximation, the optimal values of hT , hT 1 , hD, hD1

and hC are given by solving the nonlinear algebraic equations

d [SRET (hT )]

dhT
= 0,

d [SRET 1 (hT 1)]

dhT 1

= 0,
d [SRED (hD)]

dhD
= 0,

d [SRED1 (hD1)]

dhD1

= 0,
d [SREC (hC)]

dhC
= 0,

respectively. The optimal values for all of these considered cases are h∗T , h∗T 1 ,
h∗D, h∗D1 and h∗C . As an illustration, the curves of SRET and SRED, regarding
the 8th-order of approximation (M = 8) is shown in Fig. 1. Central information
regarding the optimal values of hT , hD and minima of the respective squared
residual error functions is summarized in the table of Table 2.

Indeed, the use of the squared residual error functions, by solving the equa-
tions mentioned above, allows us to obtain and optimal value that ensures the
convergence for the artificial parameter h. This represents a central advantage
in the study of the convergence of HAM. In Fig. 2, we illustrate the SHAM
analytical solutions for T and D with the numerical results using precisely the
optimum values presented in the table.

3.2.2 Density plots and dynamics of T and D using the optimization
procedures

Following the previous procedure, we analyze the dynamics of healthy hepa-
tocytes (variable T ) and non-activated dendritic cells (variable D) using the
homotopy solutions constructed above, taking as control parameter η, the ex-
pansion rate of the Cytotoxic T Lymphocytes ( variable C), considering the
range 1.0 ≤ η ≤ 1.038. Time series and density plots for variables T and D,
within the same parameter range, are depicted in Fig. 3. A noteworthy and
eye-catching feature of these figures is the periodicity of the solutions.
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Figure 3: Left -Samples of time series of variables T and D for different com-
binations of η ∈ [1.0, 1.038], corresponding to the derived analytical solutions.
Right - Density plots for T and D for the same range of the control parameter.
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4 Final considerations

In this paper we have provided new insights into the study of a chronic HCV
infection model with immune response, incorporating the effect of dendritic
cells and cytotoxic T lymphocytes. It is well-known that nonlinear equations
are particularly difficult to solve, especially in terms of analytical methods. In
general, and as stated in [19], there are two standards for a satisfactory ap-
proach of nonlinear equations: (i) it can always give approximation expressions
efficiently ; (ii) it can guarantee that approximation expressions are accurate
enough in the studied region of biophysical parameters. Using these two stan-
dards as a criterion, we have successfully applied an analytical method for non-
linear differential equations, the Step Homotopy Analysis Method (SHAM), to
construct the explicit series solution of the HCV infection model. With this an-
alytical algorithm, based on a modification of the Homotopy Analysis Method
(HAM), the five coupled original nonlinear differential equations are replaced
by an infinite number of linear sub-problems. This technique has the advantage
of giving continuous solutions within each time interval, which is not possible
by purely numerical methods. Associated to the explicit series solutions is a
convergence-control parameter h. This auxiliary parameter represents a conve-
nient way to adjust and control the convergence of the resulting series solution,
which is a significant qualitative difference compared with other methods.

In order to increase the computational efficiency, an optimal homotopy
analysis approach has been here developed to obtain optimal values for the
convergence-control parameter h by means of the definition of exact Squared
Residual Error functions. This analysis provides a fast convergence of the
homotopy series solutions and illustrates that, in fact, the homotopy analysis
method satisfies the two standard aspects (i) and (ii), mentioned previously.

The optimized SHAM method has been used to characterize the dynamics
of healthy hepatocytes (variable T ) and non-activated dendritic cells (variable
D), taking as control parameter η, the expansion rate of the Cytotoxic T
Lymphocytes ( variable C). In perfect agreement with numerical solutions,
and under appropriate parameter values, both variables T and D undergo a
regime of periodic dynamics for the studied parameter region.

The authors hope that the results presented in this article will inspire fur-
ther applications of the HAM for the analysis of highly nonlinear problems
in theoretical biology. This study illustrates how integration of theoretical
reasonings and numerical experiments contributes to our understanding of im-
portant biological models and provides trustworthy explanation of complex
phenomena witnessed in biological systems.
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