
 

Applied Mathematical Sciences, Vol. 13, 2019, no. 11, 503 - 510 

HIKARI Ltd,  www.m-hikari.com 

https://doi.org/10.12988/ams.2019.9462 

 
 

Equations for the Four-Point Rectangle 
 

G. L. Silver 

 

6439 Bethany Village Drive #302 

Centerville OH 45359-3575, USA 

 
   This article is distributed under the Creative Commons by-nc-nd Attribution License.  

Copyright © 2019 Hikari Ltd. 

 

Abstract 

 

Four numbers in a rectangular array can be interpolated by the bilinear equation. If 

the numbers are positive, they can be interpolated by a new bi-cubic equation. The 

array can be interpolated by eight new fourth-degree equations. The positive square-

roots of the fourth-degree equations are new bi-quadratic equations that are applicable 

to the analysis of the same four-point arrays. The new equations are suitable for the 

analysis of two-parameter laboratory experiments.    
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Introduction 
 

The bilinear equation is the principal instrument for the interpolation of four numbers 

in a rectangular array. Several years ago, a new equation appeared for the 

interpolation of four positive, bilinear numbers in rectangular array. The new 

equation is also exact on the squares of the original bilinear numbers [1]. 

 

A cubic equation for four positive numbers in a rectangular array 
 

Let the letters A, B, C, D define a four-point rectangle as in Fig. 1. The coordinates of 

vertices A, B, C, and D are (–1,–1), (1,–1), (–1,1), and (1,1)  respectively. The 

distance between any vertex and its two nearest neighbors is two units. Randomly 

chosen points within the rectangle can have two positive coordinate numbers, or two 

negative coordinate numbers, or one positive and one negative coordinate number.  
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           Fig. 1. A four-point rectangle 

 

If numbers at vertices A, B, C, and D are 93, 73, 33, 13, respectively, the rectangle in 

Fig. 1 can be interpolated by the expression z = (5–x–3y)3. The expansion of this 

expression has four positive terms and six negative terms. The proliferation of signs 

invites mistakes when applying polynomial equations of degree 3 or higher degrees.  

 

For the sake of simplicity, let a new coordinate system be selected: 0 .. 2 in the x-

direction, and 0 .. 2 in the y-direction. In the new coordinate system, vertices A, B, C, 

D in Fig. 1 have (x,y) coordinates (0,0), (2,0), (0,2), and (2,2), respectively. This 

choice of coordinates continues the tradition of two units of distance between nearest 

vertices in the four-point rectangle. The alternative system has the advantage that it 

eliminates the proliferation of sign changes in polynomial interpolation equations. It 

is also suggests new interpolation methods.  

 

In the new coordinate system, the general form of a cubic equation for the four-point 

rectangle is Eq. (1). It has three unknowns: (xc), (yc), and (xyc).   

  

   z =  (A + (xc)x + (yc)y + (xyc)xy)3                (1) 

 

A second change can be made for the sake of simplicity. Suppose the original data at 

vertices [A,B,C,D] are [8,64,512,1000], respectively, as in Fig. 1. Divide each 

number by the number at vertex A of the four-point rectangle. The original data 

[A,B,C,D] are now [1,8,64,125], respectively.  

 

The expression on the right-hand side of Eq. (1) can now be applied to generate four 

new simultaneous equations. For example, at the origin of the new coordinate system 

the coordinates of point A are (0,0) and the datum at vertex A is 1. The new set of 

simultaneous equations is Eqs. (3), (4), and (5). These equations derive from the 

transformed data and the new coordinate system: x = 0 .. 2, y = 0 .. 2. See Fig. 1. For 

computational purposes, the original set of four simultaneous equations has been 

reduced to a set of three simultaneous equations: Eqs. (3), (4), and (5).  

 

     13 – 1 = 0                  (2) 

 

     (1 + (2)xc)3 – 8 = 0              (3) 

 

     (1 + (2)yc)3 – 64 = 0              (4) 
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    (1 + (2)xc + (2)yc + (4)xyc)3 – 125 = 0            (5) 

 

The set of solutions to the simultaneous Eqs. (3), (4), and (5) has several members but 

only one member does not contain the imaginary unit I. That member has xc = 0.50, 

yc = 1.50, and xyc = 0.0. To reproduce the original data, the former divisor (the 

number 8) now prefixes the new interpolation equation as in Eq. (6).  

  

    z = (8)(1 + (0.50)x + (1.50y))3             (6) 

 

Equation (6) reproduces the original data in the coordinate system (x = 0 .. 2, y = 0 .. 

2). This example illustrates how to obtain a third-degree, cubic equation for 

interpolating a four-point rectangle. The method first changes the coordinates: it takes 

the origin of the new coordinate system as the lower left vertex of rectangle (A) as 

(x,y) = (0,0). The dimensions of the rectangle remain two units horizontally and two 

units vertically. All interior points of rectangle ABCD have (x,y) coordinates that are 

zero or positive numbers.  

 

Equation (6) can be rewritten for the standard coordinate system: x = –1 .. 1, y = –1 .. 

1.  To make this change, replace every (x) by (x+1) and every (y) by (y+1). Expand 

the resulting equation and rearrange the terms. See Eq. (7). That equation reproduces 

the original data in the original coordinate system.  

 

    z = 8(3.0 + 0.50(x) + 1.50(y))3                 (7)  

 

As a second example, let the numbers at vertices [A,B,C,D] be [8,27,343,125],  

respectively. Reducing the data (by division by the number at vertex A of the 

rectangle) renders a new set of numbers at vertices [A,B,C,D]. These numbers are 

[(1),(27/8), (343/8),(125/8)], respectively.  

 

The new equations are Eqs. (8)–(11). They form a simultaneous set.   

 

                         13 – 1 = 0     (8)   

  

       (1 + 2(xc))3 – 27/8 = 0    (9)  

 

       (1 + 2(yc))3 – 343/8 = 0              (10) 

   

    (1 + 2(xc) + 2(yc) + 4(xyc))3 – 125/8 = 0             (11) 

 

The solution of Eqs. (9)–(11), in real numbers, is {xyc = –3/8, xc = 1/4, yc = 5/4}. 

The interpolation equation for the rectangle in this example is Eq. (12).  
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       z = (–1)(x + 3xy – 7y – 17)3/64             (12) 

 

Fourth-power equations for four positive numbers in a rectangular 

array  
 

Forth-power interpolation equations for the four-point rectangle are derived in the 

same manner as bi-cubic equations. Equation (13) now replaces Eq. (1).  

 

      z = (A + (xc)x + (yc)y + (xyc)xy)4             (13)  

 

First Example 

Let the data at vertices A, B, C, D, be [14, 34, 74, 94] or [1, 81, 2401, 6561], 

respectively. In this example, the ratios (A/A), (B/A), (C/A), (D/A) are similar to the 

ratios applied in the preceding section. In the new coordinate system (x = 0 .. 2, y = 0 

.. 2) so Eq. (14) reduces to Eq. (15). Equations (16)–(18) follow as above.   

    

                                   (A/A + (xc)x + (yc)y + (xyc)xy)4 – 1 =  0             (14) 

                                                        14 – 1 = 0               (15)  

                                             (1 + 2(xc))4 – 81 = 0               (16) 

                                               (1 + 2(yc))4 – 2401 = 0              (17) 

                               (1 + 2(xc) + 2(yc) + 4(xyc))4 – 6561 = 0                        (18) 

 

There are eight real solutions to Eqs. (16)–(18). They render eight potential 

interpolation equations that apply in the x = 0 .. 2 and y = 0 .. 2 coordinate system. 

 

    z = (1 + x – 4y – xy)4               (19) 

 

    z = (1 + x – 4y + 3.50xy)4              (20) 

 

    z = (1 + x + 3y)4               (21) 

 

    z = (1 + x + 3y – 4.50xy)4                       (22) 

 

    z = (1 – 2x – 4y + 0.50xy)4              (23) 

 

    z = (1 – 2x  – 4y + 5xy)4               (24) 

 

    z = (1 – 2x + 3y – 3xy)4               (25) 

 

    z = (1 – 2x + 3y + 1.50xy)4              (26) 
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The preceding equations are now multiplied by the number assigned to the vertex A 

in Fig. 1. In this case, that number is 1, so Eqs. (19)–(26) do not change. The next 

step is to convert Eqs. (19)–(26) to the original coordinate system: (x = –1 .. 1) and (y 

= – 1 .. 1).  This transformation is accomplished by substituting (x+1) for every (x) 

and (y+1) for every (y) in Eqs. (19)–(26) and simplifying the result. The eight 

interpolation equations, for the original data in the original coordinate system, are 

Eqs. (27)–(34). Plot each equation and choose the most appropriate surface.   

 

    z = (xy + 5y + 3)4               (27) 

 

    z = (7xy + 9x – y + 3)4/(16)              (28) 

 

    z = (5 + x + 3y)4               (29) 

 

    z = (9xy + 7x – 1 + 3y)4/(16)              (30) 

 

    z = (xy – 3x – 7y – 9)4/(16)              (31) 

 

    z = (3x + y + 5xy)4               (32) 

 

    z = (5x + 3xy + 1)4               (33) 

 

    z = (3xy – x + 9y + 7)4/16              (34) 

 

Second Example 

 

The data at vertices A, B, C, D in Fig. 1 are 16, 256, 625, 1296, respectively. The first 

step is to reduce the data by dividing them by A as above. The reduced data become 

1, 16, 625/16, and 81, respectively. In the x = 0 .. 2, y= 0 .. 2 coordinate system (see 

above) the simultaneous equations to be solved are Eqs. (36)–(38).   

 

     14 – 1 = 0                          (35) 

 

    (1 + 2(xc))4 – 16 = 0                (36) 

    (1 + 2(yc))4 – 625/16 = 0              (37) 

    (1 + 2(xc) + 2(yc) + 4(xyc))4 – 81 = 0            (38) 

 

Eight solutions are thereby obtained for xc, yc, and xyc. See Eqs. (39)–(46) below. 

 

    {xc = –3/2, yc = –7/4, xyc = 5/8}                        (39) 

    {xc = –3/2, yc = –7/4, xyc = 17/8}             (40) 

     {xc = –3/2, yc = 3/4, xyc = 7/8}                        (41) 
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    {xc = –3/2, yc = 3/4, xyc = –5/8}             (42) 

    {xc = 1/2, yc = –7/4, xyc = –3/8}             (43) 

    {xc = – 7/4, yc = 1/2, xyc = 9/8}             (44) 

    {xc = 1/2, yc = 3/4, xyc = –1/8}             (45) 

    {xc = 1/2, yc = 3/4, xyc = –13/8}             (46)  

 

The preceding eight solutions are substituted into Eq. (13). The former divisor 16 

now prefixes each equation. These substitutions render intermediate, temporary forms 

(denoted by the letter T) of the eight interpolation equations based on Eqs. (19)–(26). 

See Eqs. (47)–(54). 

 

    T1 = 16(1 – 3x/2 – 7y/4 + (5xy/8))4             (47) 

 

    T2 = 16(1 – 3x/2 – 7y/4 + (17xy/8))4             (48) 

 

    T3 = 16(1 –3x/2) + 3y/4 + 7xy/8)4             (49)  

 

    T4 = 16(1 – 3x/2 + 3y/4 – 5xy/8)4              (50) 

 

    T5 = 16(1 + x/2 – 7y/4 – 3xy/8)4                        (51) 

 

    T6 = 16(1 + x/2 – 7y/4 + 9xy/8)4                        (52) 

 

    T7 = 16(1 + x/2 + 3y/4 – xy/8)4             (53) 

 

    T8 = 16(1 + x/2 + 3y/4 –13xy/8)4             (54) 

 

The last step in the process of developing fourth-power interpolation equations for a 

four-point rectangle involves converting Eqs. (47)–(54) into equations that apply in 

the familiar coordinate system in which x = –1 .. 1, y = –1 .. 1. This transformation is 

accomplished by changing every (x) into (x+1) and changing every (y) into (y+1) 

followed by expanding and simplifying the results. See Eqs. (55)–(62).  

 

    z = (5xy – 7x – 9y – 13)4/(256)             (55) 

    z = (17xy + 5x + 3y – 1)4/(256)             (56) 

    z = (7xy – 5x + 13y + 9)4/(256)                        (57) 

    z = (5xy + 17x – y + 3)4/(256)             (58) 

    z = (3xy – x + 17y + 5)4/(256)             (59) 

    z = (9xy + 13x – 5y + 7)4/(256)             (60) 

    z = (xy – 3x – 5y – 17)4/(256)                         (61) 

    z = (13xy + 9x + 7y – 5)4/(256)             (62) 
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Each one of Eqs. (55)–(62) reproduces the original data at vertices A, B, C, D in Fig. 

1. Equations that predict ridges or troughs may be questionable. Each equation 

estimates the center point of the rectangle where [x,y] = [0,0]. Equation (61) 

estimates center-point as ≈ 326.25391. The fourth root of this number is ≈ 4.25. This 

estimate is close to the average value of the fourth-roots of the original data: ≈ 4.25. 

That suggests Eq. (61) is a reasonable first choice from Eqs. (55)–(62).   

 

Discussion  
 

The positive square roots of Eqs. (27)–(34) are eight bi-quadratic interpolation 

equations for the four-point rectangle. One of these equations, derived from Eq. (29), 

is the same result as obtained by operational methods applied to the same data. See 

Eq. (7) in [1] and the discussion following that equation. This observation implies the 

preceding methods are potentially more fertile than methods that are based on applied 

operational calculus [2,3]. However, one example is not a satisfactory basis for 

generalizations.  

 

The equations illustrated herein, including the positive square roots of equations 

containing the exponent 4, can be plotted and the resulting surfaces examined for 

their properties. Plots of response surfaces are useful for deciding which member of a 

group of interpolation equations is likely to be a good choice for representing 

laboratory measurements.  

 

Conclusion 
 

Let four positive numbers define a rectangle. Many such rectangles can be 

interpolated by second-, third-, or fourth-power polynomial equations. That idea is an 

advance over the widespread impression that the bilinear equation is the singular 

instrument for interpolating a four-point rectangle. The new equations provide a 

variety of response surfaces for four-point rectangles defined by positive numbers. 

The alternative equations can also render curvature estimations. The bilinear equation 

cannot do that.   
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