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Abstract

In this short note, we explore soft ideal of a soft ring R implies soft submodule of

R. However, the converse doesn’t exist. We also introduce the term soft multiplica-

tive module.
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1. Introduction and Preliminaries

Soft set theory was introduced in 1999 by Molodtsov[1] for dealing to remove

uncertainties in the given data. Afterward, soft groups, soft rings, soft modules,

soft semirings, soft near rings etc. are introduced in the literature [see [3], [2],

[5], [13], [17] & [8]]. Different operations of soft sets have been introduced [[4],

[10], [11]], and many authors also introduced the wide-range of applications

towards decision making theory [[6], [12], [14]].

For basic of a module theory we refer [7]. For soft module theory we refer

[9] & [13].

Definition 1. Let η is the mapping from A to ℘(U), then the pair (η, A) is

called a soft set over the universe U [1].

Definition 2. Let ηA, ηB ∈ S(U). Then, ηA is a soft subset of ηB, is denoted

by ηA
∼
⊂ ηB, if ηA(x) ⊂ ηB(x) for all x ∈ E [15].
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Definition 3. Let ηA and ηB be soft sets over U . Then, intersection of ηA
and ηB, denoted by ηA

∼
∩ ηB, is defined by ηA

∼
∩ ηB = η

A
∼
∩B, where η

A
∼
∩B(x) =

ηA(x) ∩ ηB(x) for all x ∈ E [15].

Definition 4. Following [15], if ηA and ηB be the two soft sets over universal set

U , then ∧-product of ηA and ηB i.e., ηA∧ηB is defined as,ηA∧B : E×E → ℘(U),

and ηA∧B(x, y) = ηA(x) ∩ ηB(y).

Definition 5. If ηA and ηB be the two soft sets over the universal set U , then

∨-product of ηA and ηB is defined by ηA∨B : E × E → ℘(U) where ηA∨B(x,

y) = ηA(x) ∪ ηB(y)[15].

Definition 6. Let Ψ be a function from A to B and ηA, ηB ∈ S(U). Then the

soft subsets Ψ(ηA) ∈ S(U) and Ψ−1(ηB) ∈ S(U) defined by

Ψ(ηA)(y) =

{
∪{ηA(x) : x ∈ A, Ψ(x) = y}, if y ∈ Ψ(A)

∅, if y /∈ Ψ(A)

for all y ∈ B and Ψ−1(ηB)(x) = ηB(Ψ(x)) for all x ∈ A. Then Ψ(ηA) is

called a soft image of ηA under Ψ−1(ηB) is called the soft pre-image (or soft

inverse image) of ηB under Ψ [16].

Definition 7. Let ηA be a soft set over U and α be a subset of U . Then upper

α-inclusion of soft set ηA is defined by η⊇αA = {x ∈ A : ηA(x) ⊇ α} [16].

Definition 8. Let (η, A) be the soft right nearsemiring over right nearsemiring

R1 and (ζ, B) be the soft left nearsemiring over the left nearsemiring R2.

Suppose f : R1 → R2 and g : A→ B be the two mappings. Then the pair (f,

g) is called a soft nearsemiring anti-homomorphism if it satisfies the following

conditions.

(i) f is an anti-epimorphism of nearsemirings.

(ii) g is a surjective mapping.

(iii) f(η(x)) = ζ(g(x)) for all x ∈ A.
If f is an anti-isomorphism then and g is bijective then we call (f, g) a soft

nearsemiring anti-isomorphism [18].

Definition 9. Let (F, A) be a soft set over M . Then, (F, A) is said to be a

soft module over M if and only if F (x) is a submodule of M for all x ∈ A [18].

2. Main Result

In this section, we provide the main result that is, every soft ideal of a soft

ring is a soft submodule, however every soft submodule is not a soft ideal. An

ideal is just a subset of R but a submodule consists of the ring R, an abelian

group M and an operation defined between R and M whereas I is just a subset

of R that satisfies some criterion. Similary, an ideal being a subset of a ring R

must be closed w.r.t multiplication as well.
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Theorem 1. Every soft ideal of a soft ring is a soft submodule, however every

soft submodule is not a soft ideal.

We provide two examples in the support of the above theorem.

Example 1. Let M and N be Z-module and F (x) = {y : xρy ⇔ x+ y ∈ Z}.
Then, for all y1, y2 ∈ F (x), x ∈ N and r ∈ R = Z, we have (x+y1)+(x+y2) =

x+(y1+y2) ∈ Z, so y1+y2 ∈ F (x), r(x+y) = rx+ry ∈ Z, implies yr ∈ F (x) for

all r ∈ R. Thus, for each x ∈ N , we can easily verify that F (x) is a submodule

of M and hence, (F, A) is a soft module over M . Since multiplication in F (x)

is not defined hence it is clear that (F, A) is not an ideal of R = Z.

Example 2. Let R = A = Z4 = {0, 1, 2, 3} and I = {0, 1, 2}. The set-valued

function F : A → P (R) given by F (x) = {y ∈ R : x, y ∈ {0, 2}}. Then

F (0) = R, F (1) = {0}, F (2) = Z4 and F (3) = {0, 2}. Since all these sets

are subrings of R. Hence, (F, A) is a soft ring over R. On the other hand,

consider the function γ : I → P (R) given by γ(x) = {y ∈ R : x.y = 0}. As we

see, γ(0) = R C R, γ(1) = {0} C F (1) = {0} and γ(2) = {0, 2}C F (2) = Z4.

Hence, (γ, I) is a soft ideal of (F, A). Similarly it is easy to verify that each

of them are soft submodules over (F, A).

Definition 10. Let R be a ring and M be a module over R. (F, A) be a

soft module over the module M and (G, B) be the soft ideal. Then the soft

multiplicative module (F, A) × (G, B) = (H, A× B) is defined as H(x, y) =

F (x) ∩G(y) for all (x, y) ∈ A×B.

The following results can be easily produced about soft multiplication mod-

ules.

Proposition 1. Let (F, A) and (G, B) be two soft multiplicative modules over

M . Then,

(i) (F, A)
∼
∩ (G, B) is a multiplicative soft module.

(ii) (F, A)
∼
∪ (G, B) is a multiplicative soft module.

Proof. Straightforward. �
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