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Abstract

This paper discusses a finite element method, discontinuous Galerkin
time domain approach that solves the 2-D acoustic wave equation in
cylindrical coordinates. The method is based on discretization of the
wave field into a grid of r and 6 where r is the distance from the centre
of the domain and 6 is the radial angle. The Galerkin formulation is
used to approximate the solution of the acoustic wave equation for the
r and 60 derivatives. The boundary conditions applied at the boundaries
of the numerical grid are the free surface boundary condition at r = 1
and the absorbing boundary condition applied at the edges of the grid at
r = 2. The solution is based on considering wave motion in the direction
normal to the boundary, which in this case is the radial direction over
radial angle 8 € [0°,30°]. The exact solution is described in terms of
Bessel function of the first kind, which forms the basis of the boundary
conditions for the values of pressure and eventually sufficient accuracy
of the numerical solution. The algorithm generated in Matlab is tested
against the known analytical solution, which demonstrates that, pres-
sure of the wave increases as the radius increases within the same radial
angle. The domain was discretized using linear triangular elements. The
main advantage of this method is the ability to accurately represent the
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wave propagation in the free surface boundary with absorbing bound-
ary condition at the edges of the grid, hence the method can handle
wave propagation on the surface of a cylindrical domain. The resulting
numerical algorithm enables the evaluation of the effects of cavities on
seismograms recorded in boreholes or in cylindrical shaped tunnels.

Keywords: acoustic wave equation, wave propagation, cylindrical domain,
triangular elements, Galerkin method, numerical solution, exact solution, dis-
continuous Galerkin method

1 Introduction

Acoustic or Sound wave propagation is motion of sound waves in heteroge-
neous media (fluids and solids). There are numerous numerical methods for
solving different types of partial differential equations(PDEs) that describes
the physical dynamics of the world, for instance PDEs are used to understand
fluid flow in aerodynamics, wave dynamics for seismic exploration, orbital me-
chanics among others. [1], presents a mathematical model of linear acoustic
wave propagation in fluids. The approach is based on an analytical solution to
the homogenous wave equation for fluid medium. The propagation of acoustic
pressure wave by the normal mode analysis in a medium with 2-D spatially-
variable acoustic properties has been explained. The normal mode method
analysis gives exact solutions without assumed restrictions on pressure and ve-
locity. In [2] there is operator upscaling for acoustic wave equation, upscaling is
the process of redefining the physical system’s parameters up to a coarser grid,
forming effective or equivalent parameters. Modelling of wave propagation in
a heterogeneous medium requires input data that varies on many different
spatial and temporal scales. Operator based upscaling captures the effect of
the fine scales on a coarser domain without solving the full fine-scale problem.
The method applied to the constant density, variable sound velocity acoustic
wave equation, consists of solving small independent problems for approximate
fine-scale information internal to each coarse block and using these sub-grid so-
lutions to define an upscaled operator on the coarse grid. Galerkin method was
invented by a Russian Mathematician, Boris Grigoryerich Galerkin. Galerkin
methods are a class of methods for converting continuous operator problem
(such as a differential equation) to a discrete problem. In principle, it is equiva-
lent to applying the method of variation of parameters to a function space with
a finite set of basis functions. Galerkin methods developed in engineering have
now been used in many diverse applications including meteorology, oceanology
and many other scientific disciplines that require tracking various wave phe-
nomena. Considerable research has been undertaken in recent times to solve
hyperbolic problems to develop optimal methods with respect to local poly-
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nomial degree p(REFERENCE PLEASE)[14]. The resulting methods have
hence been termed hp-finite element methods. The comparison between con-
tinuous piecewise polynomials and their discontinuous versions can be found
in [3], where a least squares stabilization method is proposed for discontinuous
Galerkin methods. The discontinuous Galerkin (DG) method was originally
introduced by Reed and Hill [4]. Erickson and Johnson [5] published a se-
ries of papers analyzing the DG method applied to parabolic problems where
they focused on the heat equation by adopting the DG method in time and
the standard Galerkin method space. Cockburn and Shu [6] extended the DG
method to solve first-order hyperbolic partial differential equations of conser-
vation laws. The authors developed later the local discontinuous Galerkin
method for convention-diffusion problems. Grote [7] presented the symmet-
ric interior penalty discontinuous Galerkin (SIPDG) method for the numerical
discretization of second order scalar wave equation. They used the SIPDG
finite element method in space while leaving the time dependence continuous.
Celiker and Cockburn [8] studied the discontinuous Galerkin, Petro-Galerkin
and hybridized mixed methods for convection-diffusion problems in one space.
Wang [9] performed a study on Finite Difference and Discontinuous Galerkin
methods for wave equations. Wave propagation problems can be modelled by
partial differential equations. Wave propagation in fluids and in solids is mod-
elled by the acoustic wave equation and the elastic wave equation respectively.
In real world applications, wave often propagates in heterogeneous media with
complex geometries, which makes it impossible to derive exact solutions to
the governing equations. An efficient numerical method produces accurate
approximation at low computational cost. The finite difference method is con-
ceptually simple and easy, but has difficulties in handling complex geometries
of the computational domain. However, Discontinuous Galerkin method is
flexible with complex geometries, making it suitable for multi-physics prob-
lems. An energy based Discontinuous Galerkin method is used to solve a
coupled acoustic-elastic problem. The idea of the DG method is to decompose
the original problem into a set of sub problems that are connected using an
appropriate transmission condition (known as the numerical flux). For geo-
metric partitioning of the computational domain, the DG method uses stan-
dard disjoint finite element meshes. In the DG method, each element of the
computational mesh determines a single sub problem. By setting the mate-
rial properties for each sub problem to be constant, the solution is calculated
separately for each element of the computational mesh. The solution for the
whole computational domain is achieved by summing over all the elements of
the mesh. In this paper we endeavour to do this by solving a 2-D acoustic
wave equation over the cylindrical domain.
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2 Mathematical Formulation

2.1 A 2-D acoustic wave propagation equation

In one dimension, the wave equation that describes the behaviour of sound is

0? 102
opr _19P _, (1)
ox? 2 ot?
where p the acoustic pressure and c is the speed of propagation. A two-
dimensional acoustic wave equation can be found using Euler’s equation and

the equation of continuity as given by Ahmad[10].
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where wu is the particle velocity, p is the acoustic pressure, p = p(z, z) is the
density and ¢ = ¢(z, 2) is the velocity of the acoustic wave in the acoustic
media. Manipulation of (2) and (3) yields
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and assuming constant density, (4) is simplified to
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The discontinuous Galerkin time domain method is applied directly to acoustic
wave problems for partial differential equations of the form

Pp  p_ 19
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where (2 is the domain. Here p(z, z,t) denotes the wave disturbance at hori-
zontal (lateral) coordinate x, vertical (depth) coordinate z (where z-axis points
downward) and time t respectively. ¢ is the medium velocity. The two dimen-
sional domain €2 is bounded by the boundary 0.

in Q (6)

2.2 The Acoustic Wave Propagation in Cylindrical co-
ordinates

The acoustic wave equation models sound propagation in the sea in the pres-
ence of cylindrical symmetry as domain. The numerical algorithm is based on
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the solution of the acoustic wave equation in 2-D cylindrical coordinates (r, )
which leads to

10 0p 1% 10%

o) tham T ae (7)

where 7 is the radius, @ is the radial angle, p is the pressure field and ¢ denotes
time[11]. For the numerical algorithm, we recast equation (7) as a system of
three coupled first order equations given by
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The numerical algorithm solves equation (8) with the free surface boundary
condition at r=a (see Figure 1) and with the absorbing boundary condition at
the edges of the grid at r=b. The variables are discretized on a spatial grid
which is non-uniform in the r direction and uniform in the 6 variable.

3 Method of Solution

3.1 Galerkin methods

Galerkin Methods belong to a class of solution methods for PDE’s where the
solution residue is minimized giving rise to well-known weak formulation of
problems. In this approach, according to Prem[12] a basis function of the form

u(,1) = do(w) + 3 (1) () (9)

is chosen where, ¢;(z) is the finite number of basis functions and ¢(t) are the
unknown coefficients. For a given differential equation of the form L[u] = f,
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Figure 1: Configuration of boundary conditions

defined on a region €2 where L is a linear spatial differential operator and f is
a given function, subject to boundary conditions u = g(s) on I'; and

ou
ot
on I'y where I' = I'; +1'5 is the boundary of the region 2. A space of functions

V is chosen in which elements © and v will reside. The function w is written
as a linear combination of the basis functions of the space,

u= Z a;Q; (11)

and v is chosen from amongst the basis functions. The measure of the residual
(error) associated with an approximate solution is defined as R[u] = L[u] — f
should then theoretically be zero. That is,

+ k(s)u = h(s) (10)

l/Rwa:Q o € CL(Q)
Q

or
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The Galerkin Method requires that the residual be orthogonal with respect to
the basis functions ¢; i.e.

< Rlu], ¢ >=0 (13)
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The infinite sums according to Matt[13], must be truncated at some large
N, the integrals evaluated and re-written as a large N-dimensional system of
equations to be solved for the unknowns as,

Ka=f (14)

According to Prem[12], the formulation can be generalized to a 2-D case which
becomes;

//Q{L[u] ~ Péudedy =0, i=1,... N (15)

é@i | [ etostsas= [ [ sasiy (16)

which in the matrix form is written as [A]{c} = {b}, where,

A;j ://Q@Ld)jdxdy
bi://qub,-dxdy

or

also

4 Solution of the acoustic wave propagation

The formulation developed above will be solved using dimensionless cylin-
drical coordinates, where the z = rcosf, z = rsinf within the domain

€ [1,2],0 € [0,F]. The acoustic wave equation in cylindrical coordinates
(r,0,t) is as given by (8). When solved using the appropriate initial and bound-
ary conditions given and on discretizing, the equation reduces to; [M|{(p} +
? + [K|{p} = 0 where K and M are stiffness and mass matrices respectively,
K. = [(VN)'VNdQ, and M, = [, NTdS2, where €, is the domain of the el-
ement and N is the basis function matrix, the exact solution for this problem,
using Bessel function of the first kind for cylindrical coordinates is;

p(r,0,t) = 100Jy(r) Sin(%t) sin 36 (17)

Hence at t=0. the initial condition for pressure becomes p(r, 8,0) = 0.
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5 The appropriate boundary conditions

There are two types of boundary conditions exclusively used in the seismic
simulation, the free surface boundary condition and the absorbing boundary
condition. The numerical simulation is carried out on a bounded domain
whose boundaries are either the physical sea surface, landform or the fields
far away from the domain of interest. The absorbing boundary condition does
not mimic any physical scenarios, but is used to truncate the open domain
problem into a finite one so that the numerical method can handle. To solve
equation (8) the free surface boundary condition at r = a (see figure 1) and
the absorbing boundary condition at the edges of the grid at » = b are used.
The variables are discretized on a spatial grid which is non-uniform in the
r direction and uniform in the 6 variable. With changing radius at r = 0
the values of pressure at the right hand boundary of the domain at t=1 are
formulated. With changing radius at § = % the values of pressure at the left
hand boundary of the domain at ¢ = 1 are also formulated.

6 The appropriate grid

The figure 2 below shows finite mesh showing discretization of the unit cell for
the cylindrical bar using triangular elements. The unit bar above is r = 2 and
¢ = %. The free surface boundary is at 7 = 1 and the absorbing boundary is
at the edges of the grid at » = 2. The domain is discretised into 8 triangular
elements.

7 Results

The solution is based on considering wave motion in the direction normal
to the boundary, which in this case is the radial direction over radial angle
6 € [0°,30°. The solution of the acoustic wave equation was obtained by solv-
ing the pressure variable over the domain using the exact solution which was
obtained from the Bessel function of the first kind. The boundary conditions
for pressure were obtained from the exact solution. For the numerical solu-
tion, the domain was discretised using linear triangular elements as in figure
3 above. Time integration was done using finite difference. Other ordinary
differential equation solvers can also be used for instance ode45. The Table
above illustrates the numerical solution, the exact solution over the nodes 1-9
and the absolute error. A comparison between numerical solution and ana-
lytical solution for pressure against r € [1,2] is represented graphically in the
figure below. A surface response for pressure over radial angle in radians and
the radius was also generated as shown in the diagram below.
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Table 1: The Numerical and the exact solutions over nodes 1-9 and the absolute

error
Node | Numerical | Exact Absolute error
1 57.9164 57.9164 | 0.0000
2 32.6593 38.6481 | 5.9888
3 0.0000 0.0000 | 0.0000
4 34.1447 34.1447 | 0.0000
5 29.7743 30.1721 | 0.3978
6 0.0000 0.0000 | 0.0000
7 3.7800 3.7860 | 0.0060
8 20.3786 18.6147 | 1.7639
9 0.0000 0.0000 | 0.0000
N

Figure 5: Graphical comparison between the numerical and the exact solutions
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Figure 6: Surface response showing pressure over radial angle ¢ in radians
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8 Discussion and Conclusion

8.1 Discussion of results

The analytical solution described in terms of Bessel function of the first kind
forms the basis of sufficient accuracy of the numerical solution. Table 1 shows
the numerical and exact values of pressure. The comparison between the nu-
merical solution and the exact solution shows that the absolute error is zero
(0) in nodes 1,3,4,6 and 9. In node 2, the absolute error is higher than in node
5,7 and 8 but very minimal in node 7. The variations are due to the curved
boundaries which basically decreases as the radius increases. Fig 4, shows
the graphical representation of the numerical solution of pressure at node 5
over the function time, which means at ¢ € [0.2,0.3] the numerical solution
is obtained for generally all the nodes. Fig 5, shows a comparison between
numerical solution and exact solution of pressure values against r € [1,2].
This means there is generally a perfect match between the numerical and ex-
act results. A surface response for pressure over radial angle in radians and
the radius was also generated as shown in fig 6, which shows that there is an
increase in pressure as the radius increases. Fig 7, shows the contour plots of
the numerical domain which further shows that the pressure is greatest at the
greatest value of radius.

8.2 Conclusion

The Garlerkin numerical method with the use of MATLAB code has been
used to solve the acoustic wave equation in 2-D cylindrical coordinates. The
method is very useful in study of the pressure effects in wave propagation
in fluids. The solution scheme is based on describing the exact solution in
terms of Bessel function of the first kind and then developing the numerical
solution. From the findings, a comparison between numerical solution and
analytical solution for pressure against r?[1,2], shows that there is an almost
perfect match between the numerical solution and analytical results. This
demonstrates that the method can very accurately handle wave propagation
in homogenous medium, including propagation on the surface of a cylindrical
object. From the findings we can also conclude that, pressure of the wave
increases as the radius increases within the same radial angle. The domain
was discretized using linear triangular elements, however the solutions at the
curved boundaries are slightly less accurate from the values of absolute errors
obtained. The errors can be improved by refining the triangular mesh by using
more triangular elements over the numerical grid or domain, carefully choosing
the time variable and by use of higher order elements i.e quadratic elements.
However, the only problem with small elements is that they can lead to small
time step which can increase the overall computational cost in terms of time.
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