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Abstract 

 

In this paper, we have studied some memory dependent Economic order quantity 

models as the memory effect has an important role to handle the business policy 

of the inventory system. Demand of a company product depends on many factors 

like behavior of staff, environment of the shop, product quality etc which are the 

main reasons of memory effect on the system. Once the customers gain some poor 

experience, further they will never purchase products from those companies or 

shop. So inclusion of memory effect in the inventory model is necessary to handle 

practical business policy. One of the best way of inclusion of memory effect in the 

EOQ model is the use of fractional calculus as fractional derivative is defined in 

terms of integration where the limits of integration are the initial state and current 

state. Three fractional order models have been developed considering (i) only the 

rate of change of the inventory level of fractional order  (ii) demand rate as a 

fractional polynomial of degree 2 , where  is the rate of change of the 

inventory level (iii) demand rate as a fractional polynomial of degree 2m , where 

m  may be different from the order of the rate of change of the inventory level. 

Here fractional order is physically treated as an index of memory. To develop the 

models here Caputo type fractional derivative has been applied. Due to solve 

those problems, we have used primal geometric programming method and finally 

some numerical examples are cited to establish the memory effect. Our 

investigation establishes the existence of memory effect on inventory 

management through fractional formulation of EOQ models which can never be 

obtained from classical calculus. 

 

Keywords: Fractional order derivative; Memory dependent derivative; Fractional 

Laplace transform method; Classical inventory model; Fractional order inventory 

models 
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1. Introduction 
 

The idea of fractional calculus was initiated in 1695[1-2].Most of the suggestions 

for interpretation of fractional calculus are a little bit abstract. They do not give 

any physical intuition but one of the most useful interpretations is, fractional 

calculus has power to remember previous effects of the input in order to 

determine the current value of the output. Such type systems are called memory 

systems. In classical calculus, a system at each time t depends only on the input at 

that time because the derivatives of integer orders are determined by the property 

of differentiable functions of time only, and they are differentiable infinitely small 

neighborhood of the measured point of the time. In the last thirty years, fractional 

calculus exhibited a remarkable progress in several fields of science such as 

mechanics, chemistry, biology [29], economics [21, 31], control theory, physics 

[27-28], signal and image processing [4-8] etc. But it is less explored in the field 

of inventory management in operations research.  

Inventory is stock of goods or resources used in organizations whose models are 

developed to minimize the total average cost. Haris [23] was the first person who 

developed the economic order quantity (EOQ) inventory model. The authors in 

(10-14, 24, 25 and reference there in) used their effort to derive the EOQ models 

using different criteria of demand, shortage etc using integer order calculus. Why 

have we considered the inventory system as a memory affected system? 

In reality the demand rate is not always same; it changes with respect to time as 

well as environment; depends on the position of the company, political and social 

conditions. For example the position of the company or shop near the main road 

or connection of the company or shop with public etc increase the demand. On the 

other hand if an object gets popularity in the market then it’s demand will increase 

or if it gets bad impression then it’s demand will decrease. In some sense demand 

of any object is not same in all shop it depends on dealing of the shopkeeper with 

the customer. This means the selling of any product depends on the quality as well 

as the shopkeeper’s attitude. Another type of memory exists here, which is 

memory due to holding cost or carrying cost. It is considered due to bad or good 

dealings of the transportation system. The effects of bad service always has a bad 

impact on the business. Bad service of the transportation driver may damage the 

commodity and reduce the profit. For this case owner of the company or shop 

should think to improve the transportation system to make his business profitable. 

 Thus, such systems depend on the history of the process not only on the current 

state of the process, i.e., a memory effect will influence the inventory system. 

Hence, inventory system is a memory dependent system. Due to the above 

reasons, we want to enjoy the facility of fractional derivative for considering 

memory effect of the inventory systems. In this paper we have not only 

considered the fractional model but also different ways of generalization through 

fractional calculus have been considered. 

Das and Roy [15] introduce fractional order inventory model with constant 

demand and no shortage but there is no suggestion for application of memory 

effect on the inventory model. Owing to the power of memory effect of fractional  
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calculus, in this paper we want to fractionalize a classical inventory model with 

quadratic demand rate into different approach and study their macroscopic 

behavior for long to low range memory. Furthermore, in the proposed memory 

less inventory model, quadratic demand is polynomial of highest degree two 

whereas in case of fractional inventory models, quadratic type demand rate may 

be fractional polynomials. In the proposed traditional classical inventory model 

i.e. memory less inventory model, governing differential equation are of first 

order and holding costs are first order integral of inventory level. In this paper, 

three types of fractionalization have been considered to observe memory effect 

considering fractional order inventory models. In the first model, only the rate of 

change of the inventory level is fractional. In the promising second and third 

model both the demand rate and the change of the inventory level are fractional. 

The fractional order of the demand rate and change of the inventory level are 

same in the second model and different in the third model. To formulate the 

fractional order inventory models, we have used the memory dependent kernel as 

described in [29].The fractional differential equations have been solved using 

fractional Laplace transform [3].We have then calculated associated fractional 

order holding costs using fractional integration. Analytical results of fractional 

order inventory model have been introduced by the primal geometric 

programming method [19]. 

Our analysis establishes that the shopkeeper or company should be alert to 

improve about his business policy such as attitude of public dealing, environment 

of shop or quality of their product. The memory parameter corresponding 

fractional rate of change of inventory level plays more important role to change 

the economic condition of the business compared to the memory parameter 

corresponding carrying cost. 

Organization of the paper is maintained as follows: In section 2, we have 

presented a brief review of fractional calculus, In section 3, a classical inventory 

model and the corresponding fractional inventory models have been developed 

and analyzed respectively, in section-4, numerical examples have been cited to 

illustrate the models and in section 5, the paper ends with some concluding 

remarks and scope of future research. 

 

 

2. Review of Fractional Calculus 
 

There are many definitions of fractional derivative. Each of them has own 

physical interpretation. In this section, we shall introduce two important 

definitions the Riemann-Liouville and the Caputo definition. Also the fractional 

Laplace transform method will be introduced as it will be used to develop this 

paper.  

 

2.1 Riemann-Liouville(R-L) fractional derivative 
If  f : R   R is a continuous function then the left Riemann-Liouville(R-L) 

derivative is denoted and defined in the following form as, 
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 
 

 
 11

( ) ( ) where 1

m x
m

a x

a

d
D f x x f d m m

m dx

    


  
     
   

    (1)           

 

This R-L definition suffers from some pitfalls. The Riemann-Liouville(R-L) 

fractional derivative of any constant is non-zero. Fractional Laplace transform of 

the Riemann-Liouville(R-L) type fractional differential equations involve 

fractional initial conditions. 

 

2.2 Caputo fractional derivative 

M.Caputo [21] eliminated the two difficulties of Riemann-Liouville definition. 

For any m times differentiable function  ,xf the Caputo fractional order 

derivative of th  order is denoted and defined in the following form 

 
 

   
11

( ) where 1

x
mC m

a x

a

D f x x f d m m
m

    


 
    
      (2)  

Caputo fractional derivative of any constant is zero and Caputo fractional order 

differential equations do not involve initial conditions with fractional derivative. 

Initial conditions in this case are same as of the classical differential equations. 

One disadvantage of Caputo fractional derivative is that it is defined for 

differentiable functions. 

 

2.3 Fractional Laplace transforms Method 

The Laplace transform of the function )(tf  is defined as  

 
0

( ( )) ( )stF s L f t e f t dt



    where s>0 and s is the transform parameter        (3a)                                                                                                

The Laplace transformation of nth order derivative is defined as  

      
1

1

0

0

n
n n n k k

k

L f t s F s s f


 



                                                                          (3b)                                                                                                      

where  tf n
 denotes n-th order derivative of  the function f with respect to t and 

for non – integer m it is defined in generalized form as, 

      
1

1

0

0
m k

n
m m k

k

L f t s F s s f
 





                                                                        (3c)  

where m is the largest integer such that  ( 1) .n m n    

 

2.4 Memory dependent derivative 

The derivative of any function ( )f x using the memory kernel can be written in the 

following form [30, 29]  

 

      
1

'

t

t

D f x K t s f s ds






                                                                              (4a)                                                                                                             
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where is the time delay and the kernel function  tK  is differentiable with 

respect to t and s. For integer order derivative the kernel is considered as 

( ') ( ')K t t t t   which is a Dirac-delta function or impulse function. It gives the 

memory less derivative. To derive the concept of memory effect using definition 

(4a) we consider the kernel as a power function in the form 

 
 
 

m
t s

K t s
m








 
 

and the fractional derivative expressed in the following form 

   
 

 
    

t t m

m m
a

a a

t s
K t s f s ds f s ds D f x

m










  
                                                  (4b)                                                                          

where
mf  denotes the m-th order derivative of f, which has specific physical 

meaning. The integer order derivative is a local property but the th  order 

fractional derivative is a no local property. The total effects of the commonly used 

th order derivative on the interval [a, t] describes the variation of a system in 

which the instantaneous change rate depends on the past state, is called the 

‘‘memory effect’’. 

 

3. Model formulations 
 

In this section, the classical order inventory model and three fractional order 

inventory models have been analytically developed. The symbols have been used 

to develop these models, are listed in the table-1.  

 

:)( Ri Demand rate :)( Qii Total order quantity 

:)( Miii Per unit cost :)( 1Civ Inventory holding cost per unit 

:)( 3Cv Ordering cost or setup cost :)()( tIvi Stock level or inventory level 

:)( Tvii Ordering interval. :)( HOCviii Inventory holding cost per 

cycle for the classical inventory model. 

:)( *Tix Optimal ordering interval ( ) :avx TOC Total average cost during the 

total time interval 
:*)( TOCxi Minimized total average cost 

during the total time interval  T,0 for 

classical model. 

,.)(,.),)(( Bxii Beta function and gamma 

function respectively. 

 

Table-1: Different symbols and items for the EOQ models. 

 

3.2 Assumptions 

In this paper, the classical and fractional order EOQ models are developed on the 

basis of the following assumptions. 

(i) Lead time is zero. (ii)Time horizon is infinite. (iii)There is no shortage. 

(iv)There is no deterioration. 
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3.3 Formulation and analysis of memory less inventory model 

Here, we have first developed a classical inventory model depending on the above 

assumptions in the following manner [9]. During the total time interval [0, T], the 

inventory level depletes due to quadratic demand 

rate 2R(t) ( ),a 0,b,c 0.a bt ct     , where shortage is not allowed. The 

inventory reaches zero level at time t=T. Therefore, inventory level at any time 

during the time interval [0,T] can be represented by the following first order 

ordinary differential equation as, 

2( )
( )

dI t
a bt ct

dt
                                                                                               (5)

                                                                                                     
with boundary conditions QI )0( and 0)( TI .Solution of this boundary value 

problem gives the inventory level ( )I t at time t in the following form, 

2 2 3 3( ) ( ) ( ) ( )
2 3

b c
I t a T t T t T t                                                                     (6) 

 

Corresponding total inventory holding cost over the time interval [0,T] is as, 

2 3 4

1 1

0

( ) ( ) ( )
2 3 4

T

t

a b c
HOC T C I t dt C T T T



                                                       (7)                                                           

Since, total cost  TOC T at time t for the classical inventory system is the sum of 

the purchasing cost(PC),inventory holding cost  HOC T and the ordering cost or 

the setup cost(
3C ), total cost  TOC T will be, 

   2 3 4

1 3
2 3 4

a b c
TOC T MQ C T T T C

  
      

  

                                              (8) 

 

Where 2 3 (0)
2 3

b c
Q aT T T I

 
    
 

                                                                (8a)                                                                                 
 

Substituting, the total average cost Q (8a) in (8) and dividing by the ordering 

interval T per unit time per cycle in the form, 

 

  2 2 3 3
1

2 3 2 3 4

av Cb c a b c
TOC T M a T T C T T T

T

     
            

      
                  (9)                        

Purpose of studying inventory management is to minimize this  avTOC T . Thus 

our classical EOQ model under consideration can be represented in the following 

form, 

    3

1
Minimize 

                  Subject to 0

avTOC T MQ HOC T C
T

T


  


 

                                             (10)                                                                

 

Minimized total average cost and optimal ordering interval are evaluated from 

(10) in the section-5. 
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3.4 Fractionalization of the Classical EOQ Model 

We shall now develop the different fractional order inventory models considering 

fractional rate of change of the inventory level. 

 

Model-I 

To study the influence of memory effects, first the differential equation (5) is 

written using the memory kernel function in the following form [29]. 

  2( )
k ' ( ' ( ') ) '

dI t
t t a bt c t dt

dt
                                                                        (11)                                                                                                 

in which ( ')k t t plays the role of a time-dependent kernel. For Markov process it 

is equal to the delta function ( ')t t   that generates the equation (5).In fact, any 

arbitrary function can be replaced by a sum of delta functions, thereby leading to a 

given type of time correlations. This type of kernel promises the existence of 

scaling features as it is often intrinsic in most natural phenomena. Thus, to 

generate the fractional order model we consider
21

( ') ( ')
(1 )

k t t t t 



  
 

, where 

0 1  and ( ) denotes the gamma function. Using the definition of fractional 

derivative [2], the equation (5) can be written to the form of fractional differential 

equations with the Caputo-type derivative in the following form as, 

   1 2
0

( )
( )t

dI t
D a bt ct

dt

 
                                                                                     (12)                                                                                                               

Now, applying fractional Caputo derivative of order ( 1)  on both sides of (12), 

and using the fact at Caputo fractional order derivative and fractional integral are 

inverse operators, the following fractional differential equations can be obtained 

for the model 

   2
0 ( )C

tD I t a bt ct     or equivalently 

 

 
 2I(t)

, 0 1.0, 0
d

a bt ct t T
dt




                                             (13)                                                                  

 

with boundary conditions 0)( TI and QI )0( . 

 

Model-II  

Now in model-II, we consider the demand rate as polynomial of t  then the 

memory dependent EOQ model will be of the following form (here we consider 

the exponent of t same as the order of fractional derivative) 

   2
0 ( )C

tD I t a bt ct      or   equivalently 

 

 
 2I(t)

, 0 1.0, 0
d

a bt ct t T
dt



 


                                             (14)                                      
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Model-III 

In model-III, we consider the demand rate as polynomial of mt  ( 0 1.0m  ) then 

the memory dependent EOQ model will be of the following form (here we 

consider the exponent of t in general may be different from the order of the 

fractional derivative) 

    2
0
C m m

tD I t a bt ct      or equivalently
 

 
 2 where 0 , 1.0, and 0m md I t
a bt ct m t T

dt




                                    (15)                                    

 

 

with boundary conditions QI )0( and 0)( TI  

 

3.4.1 Analytic solution of model-I 
Here, we consider the fractional order inventory model-I which will be solved by 

using Laplace transform method with the initial condition, given in the problem. 

In operator form the fractional differential equation in (13) can be represented as 

   2( ) ,
d

D I t a bt ct D
dt


 


                                                           (16)                                                              

where the operator D  stands for the Caputo fractional derivative with the 

operator ( 0

c

tD D  ). 

Using fractional Laplace transform and the corresponding inversion formula on 

the equation (16) we get the inventory level for this fractional order inventory 

model at time t which can be written as 

 
 

 

 

 

1 2
2

(1 ) 2 3

at bt c t
I t Q

 

  

  
           

                                                     (17)                                                                                 

Using the boundary condition   0TI on the equation (17), the total order quantity 

is obtained as 
 

 

 

 

1 2
2

(1 ) 2 3

aT b T c T
Q

 

  

  
          

                                                                  (18)                                                                                         

 

and corresponding the inventory level at time t being, 

   
 

 
 

 
















  2211

3

2

2)1(




tT

c
tT

b
tT

a
tI   (19)                  

 

For the model (16), the   0 1  order total inventory holding cost is 

denoted as  THOC  and defined as 

     
 

 
 

  

 

   

 

 

 

   

 

 

 

   

 

 

11
, 1 0

0

1 2

1 1 1
1, 2, 3,21 1 1

(20)
1 1 2 1 3 1

T

T

C
HOC T C D I t T t I t dt

B B BC aT C bT C cT



 

     



     

        



    

  


       
                                  


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Here,   is another memory parameter corresponding to the carrying cost which is 

the transportation related cost. Poor transportation service always has a bad 

impact on the business. To consider the past experience a memory parameter 

should be taken into account. 

Therefore, the total average cost per unit time per cycle of this fractional model is, 

  
         

 

   
 

   
 

11 1
, 3 1

,

1

1 1
3

2 1
. 1,

1 2 3 1

21 1
2, 3, (21)

2 3

av
MQ HOC T C aC TaMT bMT cMT

TOC B
T

bC T cC T
B B C

   
 

 

   

 
     

   
     

  

  

   
       

          

   
         
        

 

 

Now, we shall consider the following cases to study the behavior of this fractional 

order inventory model (i)0<α 1.0,0<β 1.0,   (ii)β 1.0 and   0<α 1.0,   

(iii)α 1.0 and   0<β 1.0,(iv)α 1.0,β 1.0.     

 

(i) Case-1: 0<α 1.0, 0<β 1.0.   

Here, the total average cost is 
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            (22)

 

To find the minimum value of  
,

avTOC T
 

we propose the corresponding non-

linear programming problem in the following form and solve it by primal 

geometric programming method. 
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Primal Geometric Programming Method 
In this method we have to first find the dual of the primal problem (23). This is 
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                                     (24)                                                  

with the orthogonal and normal conditions  

17654321  wwwwwww                                                                           (25)                                                                                             

and 

          01111 7654321  wwwwwww                     (26)    
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The primal-dual relations corresponding to the problem (23, 24) are  
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Using the above relations in (27), we can write the following  
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along with 2

1 1
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T

B w

 
  
 

                                                                                          (29)                                                                                                         

There are seven non-linear equations (25), (26), and the five equations of (28) 

with seven unknown 7654321 ,,,,,, wwwwwww . Optimal values 
*
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5
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2

*

1 ,,,,,, wwwwwww  are obtained solving these seven nonlinear 

equations. Then optimal ordering interval *

,T   will be obtained by substituting 
* *

1 2,w w in (29) ,then minimized total average cost *

,TOC   from (23). 

 

(ii) Case-2: 1.0 and 0 1.0   
  

Total average cost in this case is  
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Hence, the generalized inventory model (23) will be, 
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In the similar manner as in case (i) of model-I, primal geometric programming 

algorithm corresponding to the model (31) will provide the minimized total 

average cost and optimal ordering interval *

,1TOC  , .*

1,T  
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(iii) Case-3:  α 1.0 and   0<β 1.0.   

In this case, total average cost per unit time per cycle is, 
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In this case, the inventory model (23) will be, 
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In the similar manner as in case (i) of model-I, primal geometric programming 

algorithm will provide the *

1,TOC   and *
1,T  . 

 
 

(iv)Case-4: 1.0, 1.0.    

In this case, the total average cost is as, 
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In this case, the inventory model (23) is, 

 

   0 2 3 1

1,1 1Min

subject to 0

avTOC T AT BT CT DT ET

T

     



                               (36)                                               

     
  

 
  

1 1
1

1 1 1
3

where, , 1 2,1 ,
2 3 2 2 2

2
, 1 4,1 ,

3 3 4 4

aC aCaM bM bM
A aM B B

bC cC cCcM
C D B E C

   
               

 
      

 

.

 
 

In the similar way as in case (i) of model-I, primal geometric programming 

algorithm can provide the minimized total average cost  *

1,1TOC T  and optimal 

ordering interval *
1,1.T Interesting to note that the analytical results of this model 

coincides with the results of our classical model (9) where 1.0, 1.0 .    
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3.4.2 Analytic solution of model-II 

Here, we consider the fractional order inventory model, described by the equation 

(14) where the rate of change of the inventory level ( )I t  is of fractional order   

and the demand is a fractional polynomial of highest order 2 .  

The fractional order differential equation in this case can be solved by using 

fractional Laplace transform method. In operator form the equation (14) 

becomes,    2( )D I t a bt ct                                                                 (37)  

                                                             

Using fractional Laplace transform method on (47) we get the inventory level at 

time t as, 
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Total order quantity for this fractional order inventory model is obtained as  
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After using the boundary condition   0TI in the equation (38), inventory level for 

this fractional order inventory model can be obtained as  
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Memory dependent  order (0 1)  total inventory holding cost is denoted 

as  THOC  , and defined as 
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Therefore, the total average cost is 
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Now, we shall consider four cases to study the behavior of this fractional order 

model  
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(i)Case-1: 0 1.0, 0 1.0       
To find the minimum of  
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we propose the corresponding non-linear 

programming problem in the following form and solve it by primal geometric 
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Primal Geometric Programming Method 

In this method we have to first find the dual of the primal problem (43).This is 
3 5 6 71 2 4

1

1 2 3 4 5 6 7

Max ( )

w w w ww w w

BA C D E F G
d w

w w w w w w w

            
             
            

                         (44)                           

 
 

with the orthogonal and normal conditions  

1 2 3 4 5 6 7 1w w w w w w w                                                                             (45)                                                                  
 

           1 2 3 4 5 6 71 2 1 3 1 1 2 1 3 1 0w w w w w w w                                 (46)   
 

 

Corresponding primal-dual relations are given below as, 

   

   

3 1 11 2 1

1 1 2 3 4

2 1 3 1 1

5 6 7

( ), ( ) , ( ), ( )

( ), ( ), ( )

AT w d w B T w d w CT w d w DT w d w

ET w d w FT w d w GT w d w

   

   

   

    

    


   
                      (47)                                      

 

With the help of the above primal-dual relations (47) we obtain, 
2 3

1 3 3 5 6 62 2 2 2 2

2 1 1 1 1 4 1 1 4 1 1 5 1 1 7

, , , , (48)
B w Dw Dw Ew GwAw Aw Aw Aw Aw

Cw B w B w Cw B w Ew B w Fw B w Fw

   

 

  
                   

                       
                   



      along with,
2

1 1

Aw
T

B w

  
  
 

                                                                                (49)  

There are seven non-linear equations (45), (46), and the five equations of (48) 

with seven unknown 7654321 ,,,,,, wwwwwww . Solving these seven nonlinear 

equations we shall get the optimal values
*

7

*

6

*

5

*

4

*

3

*

2

*

1 ,,,,,, wwwwwww  and hence  
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optimal ordering interval *

,T  and minimized total average cost can be obtained 

by substituting * *

1 2,w w in (49) and then *

,TOC   from (43). 

  

(ii)Case-2: 1.0, 0 1.0     

Now, total average cost is presented as follows 

 
 

   

   

   
  

 

 
  

 

 
  

3 11 2 1

1
,1

2 3

1 1 1

3

1 2
1 1,1

1 2 3 1

1 1 2
1 2 1,1 1 3 1,1

1 2 1 3

av
cMT C aTaMT bMT

TOC T B

C bT C cT
B B C T

 



 




   

 
 

 

 



 
     
       

   
      

   

                       (50) 

 

Therefore, the fractional order inventory model (43) in this case is, 

 

       1 2 1 3 1 2 3 1

,1 1Min

Subject to 0

avTOC T AT BT CT DT ET FT GT

T

     



          



                    (51) 

 

   

 

   
  

 

 
  

 

 
  

1
1

1 1

3

1 2
 , , , 1 1,1 ,

1 2 3 1

1 1 2
1 2 1,1 , 1 3 1,1 ,

1 2 1 3

cM C aaM bM
A B C D B

C b C c
E B F B G C




   

 
 

 

 
     
       

   
      

   

 

In the similar manner as in case (i) of model-II, primal geometric programming 

algorithm can provide *

,1TOC and *
,1.T  

 

(iii) Case-3: 1.0,0 1.0     

In this case, total average cost becomes as follows 

 
 

 

 

 

     
 

   
 

   
 

20
1

1,

1 2
11 1

3

2 2 3 1
2,

2 3 4 2

21 1
3, 4, (52)

3 4

av bM T cM T aC TaMT
TOC T B

bC T cC T
B B C T





 


 

 
   

 


   
     
      

   
       
      

 

Therefore, the equation (43) reduces as, 

 

  2 1 2 1

1, 1Min

Subject to 0

av oTOC T AT BT CT DT ET FT GT

T

  



         




             (53)                             
 

 

 

 

 

 

     
 

 

   
 

 

   
 

0

1
1

1 1

3

2 3 1
Where, , , , 2, ,

2 3 4 2

2 31 1
3, , 4, ,

3 4

bM cMaMT aC
A B C D B

bC C c
E B F B G C


 

 
   

   
     
      

    
       
      
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In the similar way as in case (i) of model-II, the primal geometric programming 

algorithm can provide the minimum value of the total average cost *

1,TOC   and 

optimal ordering interval and *
1, .T   

 

(iv)Case-4: 1.0 , 1.0.     

Therefore, the total average cost is as follows 

 
 

 

   
  

 

 

 

 
  

 

 
  

0
1 21

1,1

1 3 1

3

2 3 2
1 2,1 1 3,1

2 3 2 4 3

3
1 4,1

4

av

bM cM bCC aaMT
B T B T

TOC T
cC

B T C T 

      
         

           
  

 
    

 

Therefore, the generalized inventory model (43) becomes as, 

   0 2 3 1

1,1 1Min

Subject to T 0

avTOC T AT BT CT DT ET      



                                               (54)                                                      

 

 

 

   
  

 

 

 

 
  

 

 
  

1 1

1

1 1 1

3

2
Where, , 1 2,1 ,

2 3 2 2 2

3 2 3
1 3,1 , 1 4,1 , .

4 3 4 4

bM C a C aaM bM
A aM B B

cM bC cC cC
C B D B E C

   
               

   
       
    

 
In the similar way as in case (i) of model-I, primal geometric programming 

algorithm can provide  *

1,1TOC T  and *
1,1.T Interesting to note that the analytical 

results of this model coincides with the results of our classical model (9) where 

1.0, 1.0 .    

 

3.4.3 Analytic solution of model –III 

Here, we consider the fractional order inventory model which is described by the 

equation (15).The fractional order differential equation (15) can be solved by 

using Laplace transform method with the initial condition, are given in the 

problem. In operator form the equation (15) becomes, 

   2( ) m mD I t a bt ct                                                                              (55)                                                                             
 

whereα maybe different from m,where is the memoryparameter 0<α 1.0.   

Using fractional Laplace transform method on (55) we get, 

 
   

 
   

 

1 1 2

(1 ) 1 2 1

m m
b t c m tat

I t Q
m m

  

  

     
    
        
 

                                           (56)                                                       

 

after using the boundary condition   0TI in the equation (56), the total order 

quantity for this type fractional order inventory model can be obtained as, 

   

 
   

 

2
1 1 2

(1 ) 1 2 1

m m
b m T c m TaT

Q
m m

 

  

     
   
        
 

                                         (57)                                                    



 
  
 

 

812                                                                                       Rituparna Pakhira et al. 

 

 

Therefore, fractional inventory level can be written as follows 

 
   

 

   

 

   

 

   

 

2
1 1 1 2 1 2

(58)
(1 ) (1 ) 1 1 2 1 2 1

m m m m
m T t m T m tT t

I t a b c
m m m m

     

     

               
          

                         

 

Corresponding memory dependent th order inventory holding cost is denoted 

as  THOC m  ,,  and defined as

 
     

 
 

 
  

 

   

 

 

   

   

 

 

   

   

 

 

11
, , 1 0

0

11

1

1, 1 1,1 1

1 1 1

1 2 2 1,1
(59)

2 1 1

T

m T

m l

C
HOC T C D I t T t I t dt

B C b m T B mC aT

m

C c m T B m

m



 

 

 



   

     

 

  



 



  


       
      

               

    
  

       



Therefore, the total average cost is 

 
  

 

    
 

    
 

 

   
 

 

   

   
 

 
   

   
 

 

,m, 3

,m,

2

1

2

1 1

1 1 2 1,1

1 1 2 1 1 11

1 1, 2 1 2 1,1 1

1 1 2 1 1

m m

m m

MQ HOC T C
TOC T

T

b m T c m T BaT C aT
M

m m

T
C b m T B m C c m T B m

m m

 

 

 
 

   

 

     

   

     

 


   

 


                             
 

        
    

             
3

(60)

C

 
 
 
 
 

  
  

  
  

 

Now, we shall consider eight cases to study this type fractional order model as 

follows  

( )0 1.0 ,0 1.0,0 1.0, ( ) 1.0 0 1.0,0 1.0

( ) 1.0 0 1.0,0 1.0,(iv) 1.0 0 1.0,0 1.0

( ) 1.0 0 1.0, ( ) 1.0 0 1.0,

( ) 1.0 ,0 1.0, (viii) 1.0

i m ii m and

iii and m and m

v m and vi m and

vii m m

   

   

   

   

          

         

       

        
 

 

(i)Case-1: 0 1.0 ,0 1.0,0 1.0m        

To find the minimum value of the total average cost  
,m,

avTOC T
 

we propose the 

corresponding non-linear programming problem in the following form and solve it 

using primal geometric programming method, are discussed bellow 

 

       

 

1 2 1 1 11

1

2 1 1
, ,Min

Subject to 0

m m m

av m
m

AT BT CT DT ET

TOC T FT GT

T

     

 
 

        

   

    
 
     




 
(61) 
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 

 

 

 

     

 

 

 

   

 

 

 

   

 

 

1

1 1

3

Mb 1 c M 2 1 1,Ma 1
where, A , , , ,

1 1 2 1 1 1

1 1, 1 2 2 1,1 1
, , .

1 1 2 1 1

m m BC a
B C D

m m

C b m B m m C c B m
E F G C

m m

 

     

   

     

     
                   

          
                        

 

Primal Geometric Programming Method 
In this method we have to first find the dual of the primal problem (61).This is 

3 5 6 71 2 4

1

1 2 3 4 5 6 7

A
Max d(w)

w

w w w ww w w

B C D E F G

w w w w w w

            
             
            

                                        (62)                                     
 

with the orthogonal and normal conditions are  

17654321  wwwwwww                                                                     (63)
 

           1 2 3 4 5 6 71 1 2 1 1 1 2 1 0 (64)w m w m w w m w m w w                           

Corresponding, primal- dual relations are given below as 

   

     

1 2 11
1 1 2 3

2 1 1 1 1
3 4 5 7

( ), ( ), ( )

( ), ( ), ( ), ( )

mm

m m

AT w d w B T w d w CT w d w

CT w d w DT w d w ET w d w GT w d w

 

    

   

       

   

    

          (65) 

 

The relations (65) gives the following  
2 2

1 3 3 5 6 62 2 2 2 2

2 1 1 4 1 1 4 1 1 5 1 1 1 1 7

, , , ,

m m

m mB w Dw Dw Ew GwAw Aw Aw Aw Aw

Cw B w Cw B w Ew B w Fw B w B w Fw

       
   
                 

                  
              

(66) 

along with 

2

1 1

m Aw
T

B w

 
  
 

                                                                                                        (67) 

There are seven non-linear equations (63), (64) and the five equations in (66) with 

seven unknown 7654321 ,,,,,, wwwwwww . Solving these seven nonlinear 

equations we shall get the optimal values
*

7

*

6

*

5

*

4

*

3

*

2

*

1 ,,,,,, wwwwwww  and hence 

optimal ordering interval *

,T  and minimized total average cost can be obtained 

by substituting * *

1 2,w w in (67) and then minimized total average cost from (61). 

  

(ii)Case-2:  1.0 ,0 1.0,0 1.0.m        

Then system (61) reduces to 

       1 1( 1) ( ) ( 1) 1

,l, 1Min TOC
(68)

Subject to 0

av T AT BT CT DT ET FT GT

T

       

 

             




         

 

 

   

 

     

 

 

1

1

1 1

3

1,Ma Mb 2cM 1
where,  A , , , ,

1 2 3 1 1

2, 3,21 1
, ,

2 1 3 1

BC a
B C D

B BC b C c
E F G C

 

     

   

     

 
     

            

    
       

                 
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In the similar manner as in case (i) of model-III, using primal geometric 

programming algorithm  *

,1,TOC T   and *
,1,T  can be found. 

 

(iii) Case-3: 0 1.0,0 1.0,and 1.0.m        

For this parametric values the system (61) reduces to 

         1 2( 1) ( 2 1) 1

,m,1 1Min TOC

Subject to 0

m mav m mT AT BT CT DT ET FT GT

T

    



             



     (69)

 

 

 

 

 

   
  

 

 
  

 

 
  

1
1

1 1

3

Mb 1 c M 2 1Ma
where, A , , , 1 1,1 ,

1 1 2 1 1

1 1 2
1 1,1 , 1 2 1,1 ,

1 2 1

m m C a
B C D B

m m

C b m m C c
E B m F B m G C

m m


   

 
 

   
     
         

   
        
     

 
In the similar way as in case (i) of model-III, primal geometric programming 

algorithm helps to give the results  TTOC m

*

1,,  and  .*

1,, TT m  

 

(iv)Case-4: 1.0 ,0 1.0,0 1.0.m       

In this case, inventory model (61) can be written as follows 

       20 (m) (2 ) 1

1,m, 1Min TOC

Subject to 0

m mav mT AT BT CT DT ET FT GT

T

  



         




                 (70) 

 

 

 

   

 

 

 

   

 

 

 

   

 

 

1 1

1 1

3

Mb 1 c M 2 1 2,1
where A Ma , , ,

2 2 2 1

1 2, 1 2 2,1 1
, ,

2 1 2 1

m m B
B C D C a

m m

C b m B m m C c B m
E F G C

m m



 

 

   

    
             

        
                      

  

Using primal geometric programming algorithm we can find minimized total 

average cost *

1,m,TOC   and optimal ordering interval *
1,m,T   as describe in case-1. 

 

(v) Case-5: 1.0 and 0 1.0m        

Therefore, generalized inventory model (61) reduces as, 

       1 2( 1) 1

1, ,1 1Min TOC

Subject 0

av T AT BT CT DT ET

T

  



       




                     
(71) 

       
  

 
  

 
  

1
1

1 1
3

Ma Mb 2cM
where, A , , , 1 1,1 ,

1 2 3 1

2
1 2,1 , 1 3,1 ,  

2 3

C a
B C D B

C b C c
E B F B G C


   

 
 

     
       

      
   

 
In the similar way as in case (i) of model-III, primal geometric programming 

algorithm can give the minimized total average cost *

1, ,1TOC   and optimal ordering 

interval *
1, ,1.T   

 

(vi) Case-6: 1.0, 1.0, 0 1.0m       

Therefore, generalized inventory model (61) reduces as, 
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       1 20 (2) 1

1,1, 1Min TOC

Subject to 0

av T AT BT CT DT ET FT GT

T

  



         




                        (72)
 

 
 
 

 

 

   

 

 

1 1

1 1
3

2,Mb cM 1
where,A Ma , , , ,

2 3 1

3, 4,1 1
, ,

2 1 3 1

B
B C D C a

B BC b C c
E F G C



 

 

   

 
         

   
                  

 

 

In the similar manner as in case (i) of model-III, primal geometric programming 

algorithm gives the analytical results of the minimized total average cost *

1,1,TOC   

and optimal ordering interval *
1,1, .T   

 

(vii)Case-7: 1.0 and 0 1.0m      

In this case, the generalized inventory model (61) becomes as, 

  0 2 1 2 1 1

1,m,1 1

Subject to 0

av m m m mMinTOC T AT BT CT DT ET FT GT

T

         




           (73) 

 

 

 

 

     
 

 

   
 

 

   
 

1

1

1 1

3

1 2 1 1
where, , , , 2,1

2 2 2 2 2 2

1 2 11 1
2,1 , 2 2,1 ,

2 2 2 2 2

bM m cM m C aMaM
A B C D B

m m

C b m C c m
E B m F B m G C

m m

    
     

        

      
         

             
In the similar manner as in case (i) primal geometric programming algorithm can 

give the minimized total average cost *

1,m,1TOC  and optimal ordering interval *
1,m,1.T  

 

(viii)Case-8: 1.0.m     

In this case, the generalized inventory model (61) becomes as, 

  0 (2) 3 1

1,1,1 1Min TOC

Subject to 0

av T AT BT CT DT ET

T

     



                                       (74) 

  

  
 

   
 

1
1 1 3

11 1 1

Where, , 1 2,1 ,
2 2 2

3 1
1 3,1 , 4,1

3 2 3 3 4 2 4

C ab b
A Ma B C a B E C

C cC b C b C ccM cM
C B D B

  
         

   

    
                   

M M

 

In the similar way as in case (i) of model-I, primal geometric programming 

algorithm can provide the minimized total average cost  *

1,1TOC T  and optimal 

ordering interval *
1,1.T Interesting to note that the analytical results of this model 

coincides with the results of our classical model (9) where .0.1  m  

 

4. Numerical illustrations 
 

(i)To illustrate numerically the developed classical and fractional order inventory 

model we consider empirical values of the various parameters in proper units as 
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40, 20,a b  1 32, 15, 200, 300c c c U    . The optimal ordering interval, 

minimized total average cost of the classical inventory model are found 0.2409 

units and 1.3643x104 units respectively using matlab minimization process. 

 

(ii) Here, we provide numerical illustration for the fractional order inventory 

models considering same parameters as used in classical inventory model. 
(a)  (b)  (c) 

  *

,T  *

,TOC  

( x104) 

  
*

,T  *

,TOC  

( x104) 

  *

,T  *

,TOC  

( x104) 

0.0951 3.3023 1.3643 0.1 0.2523 1.361 0.1 3.6215 1.3459 

0.1 3.2830 1.3708 0.166991 0.2507 1.3643 0.11725 3.5369 1.3692 

0.2 2.8981 1.5004 0.2 0.2498 1.3653 0.2 3.1492 1.4775 
0.3 2.5267  1.6171 0.3 0.2473 1.3673 0.3 2.7123 1.5967 

0.4 2.1649 1.7136 0.4 0.2449 1.3683 0.4 2.3007 1.6964 
0.5 1.8098 1.7817 0.5 0.2430 1.3685 0.5 1.9072 1.7684 
0.6 1.4597 1.8123 0.6 0.2417 1.3681 0.6 1.5272 1.8035 
0.7 1.1145 1.7954 0.7 0.2408 1.3673 0.7 1.1582 1.7915 
0.8 0.7778 1.7207 0.8 0.2405 1.3664 0.8 0.8023 1.7214 

0.9 0.4669 1.5776 0.9 0.2406 1.3653 0.9 0.4759 1.5817 

1.0 0.2409 1.3643 1.0 0.2409 1.3643 1.0 0.2414 1.3692 

 

Table-2: Optimal ordering interval and minimized total average cost *

,TOC :   (a) 

For 1.0,  and  varies  from 0.1 to 1.0  as defined in section 3.4.1 (fractional 

model-I) case-2, (b)for 1.0  to0.1 from  variesand,0.1    as defined 

insection3.4.1(fractional model-I) case-3, (c) for 0.5,   and   

varies  from 0.1 to 1.0  as defined in section 3.4.1(fractional model-I) case-1. 

 

It is clear from the table-2(a) that there is a critical value of the memory parameter 

(here it is 6.0 ), where the minimized total average cost becomes maximum 

and then gradually decreases bellow and above. In such case, low values of 

 signifies large memory of the inventory problem. Moreover there is another 

critical point ( 0.0951  )at which minimum value of the total average cost 

becomes equal to the memory less minimized total average cost )1(  but 

optimal ordering interval in that case is different. Our analysis shows that for large 

memory effect, the system needs more time to reach the minimum value of the 

total average cost taking longer time to sell the optimum lot size compared to the 

memory less inventory system. Hence, rate of selling for large memory, the 

system is affected. Therefore, to reach the same profit as in case of memory less 

system, the shopkeeper should change his business policy such as attitude of 

public dealing, environment of shop or company, product quality etc. The above 

described facts happen in real life inventory system which cannot consider in the 

memory less inventory model. 
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Initially the business started with reputation with maximum profit minimizing the 

total average cost. As time goes on, the company starts to lose it’s reputation due 

to various unwanted causes. Accordingly, the company starts to downfall of its 

business when downfall becomes maximum at 0.6  .Attaining highest at the 

point, the company changes its business policy and takes care to recover its 

reputation.  

In table-2(b) we presented the optimal ordering interval and minimized total 

average cost *

,TOC for 1.0  to0.1 from  variesand,0.1   . It is clear from the 

table-2(b) that there is a critical memory value of the memory parameter   (here 

it is  5.0 ) for which minimized total average cost
*

,1 TOC  becomes maximum 

and then gradually decreases below and above.  

When memory parameter  1.0   but another memory parameter(the exponent 

of holding cost  )varies, optimal ordering interval, minimized total average cost 

do not carry sensitive difference from large to low memory value of the memory 

parameter  . For the large memory effect of the memory parameter (  ), system 

does not take significantly more time to reach the minimum value of the total 

average cost compared to the memory less inventory system. For all memory 

value of the memory parameter  , minimized total average cost is almost same 

compared to the memory less system. Practically,   is the memory parameter 

corresponding inventory holding cost or carrying cost. Here, memory or past 

experience is considered as bad attitude of the shopkeeper to the transportation 

driver for the shoes business or cloth business etc. But, in general the 

transportation driver does not react corresponding bad attitude of the shopkeeper. 

On the other hand, transportation driver may be bad as a service man i.e. he may 

not serious his duty. Due to the above reason, the system is affected by the bad 

service of the transportation but this is not effective too which is also proved from 

the table-2(b). 

In table-2(b) , *

,TOC  shows the similar behavior as in table-2(a) and in this case 

the ordering time interval *

,T 
 is less which implies for 1.0  and fractionally 

varying   lesser time is required to attain minimum value of the total average cost. 

It is clear from the table-2(c) that when both the memory parameters , are 

fractional then there is a critical memory value  5.0,6.0   of them for 

which minimized total average cost becomes maximum and then gradually 

decreases below and above. When exponent of holding cost is 

fractional 0.5  and another memory parameter   varies, minimized total 

average cost 0.11725,0.5TOC  is same to 5.0,0.1TOC but in the optimal ordering interval 

there is difference. For the large memory effect of the memory parameter ( ), 

system takes more time to reach the minimum value of the total average cost 

compared to the low memory effect. It is also observed from table-2(c) that for 

5.0 the value of
*

,TOC  is maximum at 7.0  in model-II but it attains maxi- 
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mum at 6.0 in model-I. This fact happens due to consideration of fractional 

polynomials in the demand rate in model-II. 

 

Table-2(c) shows very minor change in *

,TOC  from that in table-2(a). In this 

case, *

,T is slightly higher than in table-2(a) which implies at same range of   

but with fractional   optimal ordering interval is slightly higher i.e. to reach the 

same value of the minimized total average cost, little higher time is required. 

The following table-3(a) and 3(b) has been constructed for model-II, where rate of 

change of inventory level is of fractional order  and the highest degree of the 

demand polynomial is also fractional order 2 .  

For 1.0  and  is arbitrary )0.10(    fractional, the model-II and model-I 

are identical. The obtained numerical results are same as given in table-2(b). 
(a)  (b) 

  *

,T  *

,TOC    *

,T  *

,TOC  

 

0.1 1.0000x104   12.2060 0.1 675.3851 427.1055 

0.2 1.0000x104 98.7967 0.2 135.0484 1.8042 x103 

0.3 4.6832x103 983.5621 0.3 46.3908 4.6288x103 

0.4 203.7677 4.9821x103 0.4 18.7019 8.8477x103 

0.5 21.0506 1.1192x104 0.5 7.8573 1.3414x104 

0.6 5.0603 1.5846x104 0.6 7.2745 1.3643x104 

0.7 1.9656 1.7787x104 0.7 3.4517 1.6771x104 

0.8 0.9469 1.7591x104 0.8 1.6676 1.8113x104 

0.9 0.4797 1.6026x104 0.9 0.8742 1.7670x104 

1.0 0.2430 1.3685x104 1.0 0.4621 1.6008x104 

 

Table-3:Optimal ordering interval and minimized total average cost *
,TOC  (a) for 

0.5, and varies  from 0.1 to 1.0   as defined in section 3.4.2(fractional 

model-II) case-1,(b) for 1.0, and varies  from 0.1 to 1.0   as defined in 

section 3.4.1(fractional model-II) case-2. 

 

It is also clear from the table-3(a), for large memory effect, the memory 

parameter  and minimized total average cost and optimal ordering interval is 

significantly effective. It can be concluded that for this case, the system takes 

more time to reach minimum value of the total average cost compared to low 

memory effect. Hence, in this case for large memory value from 

5.0,1.0to5.0,3.0    business will take long time to reach the 

minimized total average cost. The long time implies that there may be some 

demurrage of inventory. 

For from 0.1to1.0  and 0.5  , table-3(a) shows that for low value of , *

,TOC  is 

very low compared to table-2(a) but it reaches to its maximum value 1.8113x104 

units at 0.7.   After which, the total minimized cost is same order as in table-2(a)  
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but in this case before attaining the maximum value of *

,TOC  optimal ordering 

interval is very high and it is less after attaining the maximum value. In this case, 

the model will realistic on or after 0.5, 0.5   . 

Here also the minimized total average cost *
,1TOC  is maximum at 0.7   and 

gradually decreases below and above. Inclusion of memory in carrying cost has an 

effect which cannot be neglected. There is a memory value of the memory 

parameter (here it is 0.5385987, 1.0   ) where minimum value of the total 

average cost becomes equal to the same to 
*

1,1TOC   but the optimal ordering 

interval is high in the memory dependent case. 

It is also clear from the table-3(b) that there is huge difference between  
*

0.1,1.0TOC and 
*

0.1,0.1TOC (
*

0.1,0.1TOC >>
*

0.1,1.0TOC  )but the optimal ordering 

interval *
0.1,1.0T is much higher than *

0.1,0.1T .Hence, for large memory effect, the length 

of the ordering interval is highly large then the process will continue a long time 

and consequently there may arise significant effect on the inventory demurrage. 

For the above reason in the real-life application optimal ordering interval *
,T    

should belong to  0.2409,7.8753  and due to the demurrage of inventory there is 

less significance of  *

, 18.7019,675.3851 .T    

Another conclusion can be done from the above that for any value of  (the 

fractional exponent for holding cost) there is a memory value (here it 

is 0.5385987   ) for which the value of *
,TOC   is same to the minimized total 

average cost *

1,1TOC but there is a significant difference in the values of optimal 

ordering interval. It is also clear that the memory parameter  plays significant 

role to show influence of memory or past history of the system compared to the 

memory parameter . It actually occurs in reality because shopkeeper’s attitude 

and quality of the product all are considered for the memory parameter   which 

has very much power to attack the business compared to the bad or good service 

of the transportation driver. 

 

The table-3(a) and 3(b) shows that the model-II where demand is fractional, is 

valid for short memory and in this case both table-3(a) and 3(b) shows that the 

optimal ordering interval is very high for low memory ( here it is 0.5 ). 
The following table-4 has been constructed for model-III where rate of change of 

inventory level is of fractional order  and highest degree of the demand 

polynomial is also .m (where   and m  may be different). 

For 1.0, and varies  from 0.1 to 1.0m    the model-III and model-I are 

identical. The obtained numerical results are same as given in table-2(a). 

For 1.0, and varies  from 0.1 to 1.0m    model-III and model-I are 

identical. The obtained numerical results are same as given in table-2(b). 
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  *
,m,T 

 *
,m,TOC 

 

0.1 287.6893 2.1935x103 

0.2 143.7971 3.6595x103 

0.3 75.1066 5.6814x103 

0.4 39.9421 8.2434 x103 

0.5 21.0506 1.1192 x104 

0.6 10.6353 1.4190 x104 

0.62797 8.6677 1.4969 x104 

0.7 4.9038 1.6697x104 

0.8 1.8994 1.8004x104 

0.9 0.5687 1.7404x104 

1.0 0.1969 1.4969 x104 

 

Table-4: Optimal ordering interval and minimized total average cost *
,m,TOC   for 

0.5, and varies  from 0.1 to 1.0m     as defined in section3.4.3 (fractional 

model-III) case-1. 

 

From the table-4(a), it is obvious that minimized total average cost *
,m,TOC  is 

maximum at the memory value 0.5 and 0.8m      and gradually decreases 

below and above with respect to the memory parameter  .Here, it has observed 

that for the low value of the memory parameter, minimized total average cost is 

less compared to the high memory effect. 

Again, it is clear from the table-4(a) that there is a memory value 62797.0  for 

which the minimum value of the total average cost *
0.62797,0.5,0.5TOC  is same to 

*

5.0,5.0,1TOC  but there is a significant difference in the values of the optimal 

ordering interval. Hence, in this case, we can say that the business is highly 

attacked by the bad past experience of the system compared to the low memory 

value. To recover this type bad exogenous effect, businessman should be alert in 

present or future. It is also shown that for large memory effect, the inventory 

system takes more time to reach the minimum value of the total average cost 

compared to low memory effect. 

 The table-4(a) shows that for low value of , the optimal ordering interval is low 

compared to the table-3(b). 

 

5. Conclusion 
 

Due to the property of carrying memory, fractional calculus has become an 

improvement field of research in science and engineering as well as inventory 

management system also, because it has significant dependence on its past 

history. Fractional calculus takes an important role in this study. In this paper, we 

have formulated three different type of generalized inventory model 

corresponding to a classical inventory model with nonlinear demand rate. Two  
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memory parameters are considered where one corresponds to the fractional rate of 

change of inventory level and another corresponds to the exponent of the 

fractional integration to find out carrying cost of the inventory problem. We have 

also found the analytic solutions for three models for different ranges of  and 

  0 1;0 1.0     (smaller values of  and  corresponds to long memory 

(close to 0.1) and large values (close to 1.0) corresponds to short memory) with 

solving the fractional differential equation using fractional Laplace transform 

technique. From the numerical estimation, we have seen that each case of 

 and    0 1, 1.0; 1.0, 0 1.0; and both fractional           , the 

minimized total average cost increases to attain a maximum value 

at 0.6 or 0.7    and then falls down. Short memory works more effectively 

when demand rate is a fractional polynomial. On the other hand, for quadratic 

type demand rate long memory dominates. This implies the fractional order 

inventory model with fractional demand polynomial works effectively for a 

business which has been newly started. Hence, our second and third model is 

more effective as well as efficient in this situation. On the other hand, for an 

already established business with long memory, our first model is more effective. 

More works with practical information need to be carried out for future aspects. 
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