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Abstract 

 

 This research aims to examine the equality of two nonparametric regression 

functions using two test statistics: the robust kernel regression (Arks), which 

estimates regression functions from the robust kernel regression, and the kernel 

regression (Aks), which estimates regression functions with the Nadaraya-Watson 

Estimator. Influenced by the Kolmogorov-Smirnov test statistic, the test statistic 

Arks in the present study is created from the empirical distribution function (EDF) 

of errors. The efficiency of each of the statistics is also compared when the 

distribution of errors is heavy-tailed and outliers are present in the data. It is found 

that in case of normal distribution of errors with no outliers, the test statistics Arks 

and Aks are almost equally efficient. In contrast, in case of heavy-tailed 

distribution of errors or presence of outliers, the test statistic Arks is much more 

efficient than the test statistic Aks. Additionally, as the size of n is larger, both 

statistics become more efficient. In addition, in case the regression function is 

linear, both test statistics are highly efficient. Finally, the application of the two 

test statistics to actual data yields consistent results. 

 

Keywords: robust nonparametric regression, kernel regression, empirical 

distribution function, bootstrap, nonparametric regression 

 

1 Introduction 
 

Nonparametric regression is a category of regression analysis in which the 

regression function is unknown and hence must be estimated from independent  
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random samples that have been smoothed. In this type of analysis, the regression 

model is in the form of ( )Y g x   , where Y represents a conditional expected  

value and the mean of Y-values is represented by E(Y|X). Some studies compare 

the differences between two sets of data that involve the relationship between the 

independent variable X and the dependent variable Y through nonparametric 

regression using an analysis of the differences between regression curves. For 

instance, [1] examined the differences between two EDFs of errors based on the 

principle of kernel regression by estimating errors of the regression curves using 

ˆ ( )
ˆ

ˆ ( )

ij j ij

ij

j ij

Y g X

X





  and ˆ ( )j ijg X  using the Nadaraya-Watson Estimator. In their 

bootstrap test, [2] tested the equality of the nonparametric regression curves of the 

test statistics based on the functional distances between nonparametric estimators 

of the regression functions as well as estimated the critical values of the test 

statistics using the bootstrap resampling method. [3] employed Fourier 

coefficients to investigate the equality of the regression curves 
1( )g x  and 

2 ( )g x  

in case the data involved fixed-design, homoscedastic error. [4] conducted a 

nonparametric analysis of regression functions by applying a new method for 

comparing the regression curves 
1( )g x  and 

2 ( )g x , that is, making estimation 

based on the chosen points. They also examined the distribution of the test 

statistic T̂  under the null hypothesis 
0 1 2: ( ) ( )H g x g x  and the alternative 

hypothesis 
1 1 2: ( ) ( )H g x g x as well as explored the weight functions that would 

equip the test statistic with the highest power of the test. [5] investigated the test 

statistics for comparing nonparametric regression curves to one-sided curves 

under the null hypothesis 
0 1 2: ( ) ( )H g x g x  and the alternative hypothesis 

1 1 2: ( ) ( )H g x g x  with the sample average of errors being estimated from each of 

the nonparametric regression curves. [6] employed nonparametric tests to 

compare the regression curves in case the data involved more than two sets of 

population, the test statistics were dependent on local linear estimates, and a data-

driven approach was used to select the bandwidth. [7] compared nonparametric 

regression curves based on a scale-space visualization tool for statistical 

inferences referred to as significant ZERo crossing of the differences (SiZer) 

analysis. This method does not require any specification of smoothing parameters 

but involves a comparison of a wide range of resolutions to determine the 

differences between two regression curves at each resolution level and a 

comparison of k regression curves through error analysis.  

 However, little research has focused on the robust kernel regression, which 

can provide an effective solution in case random errors 
1 2, ,..., n    are heavy-

tailed. Another problem with previous studies is that outliers heavily influence the 

estimation of regression functions involving a kernel estimator, leading to 

inefficiency in testing the equality of regression functions. Such issues have been 

addressed by few researchers. [8] employed a marked empirical process to test the 
equality of nonparametric regression curves and compared the efficiency of the test 
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statistics in case of heavy-tailed errors. [9] tested the equality of two parametric 

quantile regression curves and compared the conditional quantile regression and 

the conditional mean regression in case errors were heavy-tailed and outliers were 

present in the data.  

 Therefore, the main objective of the present study is to examine the 

efficiency of robust nonparametric regression in testing the equality of two 

regression curves where errors are represented by ( )ij ij j ijY g X  
 
and ( )j ijg X  

represents the nonparametric regression function derived from the robust 

estimator 0
ˆ ( , , )jg x h k , which will be detailed in the next section. This research 

also addresses issues pertaining to the impact of outliers, the distribution of 

heavy-tailed errors, model construction, and the application of the test statistics to 

actual data. The assumption behind the test statistics is that two sets of data have a 

similar relationship between the independent variable and the dependent variable 

provided that the EDF of each of the regression functions involved is equal.   

 

2. Methods 
 

2.1 Robust nonparametric kernel regression 

This study performs a nonparametric regression analysis using the nonparametric 

kernel regression in the form of ( ) , 1,...,ij j ij ij jY g X i n   , where 1,2j   and 

the expected value of random errors is derived from ( | ) 0ij ijE X  . The main 

objective of the research is to estimate the regression mean function ( )j ijg X . 

However, as the data used to calculate (Xij,Yij) may be comprised of outliers, a 

robust ( )j ijg X  is necessary to account for the impact of outliers on the traditional 

nonparametric kernel regression. Specifically, outliers will have more impact in 

case the regression curve are estimated using the nonparametric kernel regression, 

pulling the regression function toward them, details are shown in figure 1. 

 

 
Figure 1: (a) Illustrates the scatter plot and estimate regression curve with     classical 

nonparametric kernel regression (Nadaraya- Watson estimator) (b) Illustrates the 

scatter plot and estimate regression curve with robust nonparametric kernel 

regression. 
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Therefore, to ensure the power of the test of the test statistic, the regression curve 

is estimated based on the robust nonparametric kernel regression with the robust 

kernel regression. According [10], the estimator of regression function from 

kernel regression 0
ˆ ( , , )jg x h k  being calculated from the following equation: 

0 0

1

ˆ( , , ) { ( , , )} 0
jn

j i k i j

i

w x x h y g x h k


  , j=1,2                        (1) 

 

Where w represents the weight function and 
1

1 1

/2

1

0 0

/2

( , , ) {( ) / }
i i

i

x x

j i

x x

w x x h h K x u h du










    

for the kernel function K(.); and   represents the truncation function that can be 

calculated from ( ) (| | ) ( ) ( )k s sI s k kI s k kI s k        , where k represents 

the trimmer and I(.) represents the indicator function. 

The parameter estimation procedure is as follows: 

 

1. The beginning trimmer is determined assuming k > k0.  

2. For each k, the bandwidth value is selected using the leave-one-out cross-

validation method.  

    2.1)The equation 
1,

ˆ( , , ) ( ) 0j l i k i i

l i

w x x h y y 



   is solved, which yields 

the value of 1,
ˆ

iy . 

  2.2)  The equation  1 1,1 1 1,
ˆ ˆargmin ,...,

j jq n ny y y y      , j=1,2, 

1,..., ji n  is solved to obtain the value of h, where 1 ( )

1

( ..., )
j

j

n p

p n i

i

s s s


  represents 

the lowest value of 
1..., jns s . 

        3.  A set of points between (1)x  and ( )jnx , ' , 1,...,tx t r  is selected before the 

value of k is updated.  

              3.1)The equation  ' '

1

ˆ( , , ) ( , ) 0
jn

i t k i t

i

w x x h y g x h


   is solved to obtain 

the value of 
'ˆ( , )tg x h , where 

'

tx  represents the points between (1)x  and ( )nx . 

              3.2)The equation  '

1 1

ˆ( , ) [ (1 )]
jnr

i t

t i

I y g x h k r n q
 

     is solved to 

obtain the value of k.  

        4. The steps in 2 and 3 are repeated until the values of k and h approach to k* 

and h*. In the last step, the estimator of 
* *ˆ ( , , )tg x h k  is obtained from the solution 

to the equation  ' * ' *

1

ˆ( , , ) ( , ) 0
n

i t k i t

i

w x x h y g x h


  . 
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2.2 Test statistics 

 The robust kernel regression (Arks) is created from the EDF of errors. The 

test statistic 
2

1

ˆsup ( )rks j
yi

A G y


 , where  1/2 0ˆ ˆ ˆ( ) ( ) ( )j j jG y n F y F y   , j=1,2, and 

1,..., ji n , where 0 * *

1

1ˆ ˆ( ) ( ( ( , , )))
jn

ij

ij

F y I Y g x h k
n




  , is the estimator of the EDF 

of errors when the null hypothesis is true. In addition, ˆ ( )jF y  is the estimator of 

the EDF of errors of each regression curve. Additionally, 

* *

1

1ˆ ˆ( ) ( ( ( , , )))
jn

j ij j

ij

F y I Y g x h k
n 

   estimates 
* *ˆ ( , , )jg x h k  and 

2
* * * *

1

ˆ ˆ( , , ) ( , , )j

j

g x h k g x h k


  based on the robust nonparametric kernel regression 

principle. By contrast, the test statistic 
2

1

ˆsup ( )ks j
yi

A G y


  estimates the regression 

function using the Nadaraya-Watson Estimator. Influenced by the Kolmogorov-

Smirnov test statistic, the test statistics Arks and Aks will convergence to a normal 

distribution with the average value equaling 0 and the covariance equaling 
0 0ˆ( )(1 ( ))F y F y  . 

 

3. Simulation study 
  

         The construction of the test statistics Arks and Aks applies the bootstrap 

resampling method for convenience in critical value estimation, following [1], 

[11], [12] and [13]. The procedure is as follows.  

 1.The bootstrap replication is set at b = 1,…,B(B=1,000) for j=1,2 and 

i=1,…,nj before the transformation of the bootstrap *

,ij bY , b=1,…,B into the 

following equation.  

  * *

, ,( )ij b j ij ij bY g X   , j=1,2, i=1,…, nj  

  The test statistic Arks estimates the regression function ˆ ( )j ijg X  

using * *ˆ ( , , )jg x h k  based on the robust nonparametric regression principle, 

whereas the test statistic Aks estimates the regression function using the Nadaraya-

Watson Estimator.  

 

 2. For j=1,2, i=1,…, nj, the test statistics Arks and Aks are calculated from 

the bootstrap sample Xij,
*

,ij bY  by determining the regression functions in six forms 

with the first three representing the forms under true null hypothesis and the last 

three representing the forms under true alternative hypothesis as follows.  
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  a. 
1 2( ) ( ) 3g x g x x   

  b. 
2

1 2( ) ( ) 3g x g x x   

  c. 
1 2( ) ( ) sin(2 )g x g x x   

  d. 
1( ) 3g x x , 

2( ) 3 2g x x   

  e. 2

1( ) 3g x x , 2

2( ) 3 2g x x   

  f. 
1( ) sin(2 )g x x , 

2 ( ) sin(2 ) 2g x x   
 

 3. The distribution of errors is determined as follows.  

 

     3.1)100% of the errors in each set of data are determined to have a 

standard normal distribution according to 1 (0,1)i N  and 2 (0,1)i N , j=1,2., 

i=1,…,n,  

     3.2) 95% and 90% of the errors in each set of data are determined to 

have a standard normal distribution and the respective remaining 5% and 10% of 

the errors in each set of data are determined to have the Cauchy distribution, 

whose probability function is in the form of 
2

1
( )

1

f x
x a

b
b




  
  
   

, 

,x a         and b>0, with a=0 and b=1 in the present study.   

 4. The distribution of Xi1 and Xi2, j=1,2, i=1,…,nj are determined as 

follows.  

      4.1)  Xi1 and Xi2, j=1,2, i=1,…,nj are determined to have a uniform 

distribution in the range [0,1].  

      4.2)  Xij and j=1,2, i=1,…,nj are determined to have a uniform 

distribution in the range [0,1] with mild outliers and independent variable values 

in the range 1 1[ 3( ), 1.5( )]Q IQR Q IQR   or 1 1[ 1.5( ), 3( )]Q IQR Q IQR   with the 

outlier rates of 5% and 10% of the sample size 
1 2( , ) (20,20),(50,50)n n  , 

(100,100)   

 

4. Results 
 

A comparison of the proportions of type I errors for the first three forms (1)-(3) 

under true null hypothesis when the errors are normally distributed and when the 

errors are heavy-tailed is conducted at the significance level of 0.05. The results 

show that the test statistics Arks and Aks produce a very similar degree of type I 

errors in case of normal distribution of errors. By contrast, in case of 

90%N(0,1)+10% Cauchy, the type I errors associated with the test statistic Arks 

more closely approach 0.05 than do those associated with the test statistic Aks, 

demonstrating greater robustness of the former than the latter. Additionally, with a 

larger sample size, the type I errors associated with both test statistics better 

approximate 0.05. Finally, the two test statistics are relatively highly efficient 

when the regression function is linear, as shown in Table 1.  
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Table 1 Rejection proportions under the null hypothesis (Type I error) of model 

(1)-(3)  0.05  ,  when the distribution of error are 100% N(0,1) , 95% N(0,1) + 

5% Cauchy, and    90% N(0,1) + 10% Cauchy 

 

model sample size 
100% N(0,1) 

95% N(0,1) + 5% 

Cauchy 

90% N(0,1) + 10% 

Cauchy 

rksA  
ksA  

rksA  
ksA  

rksA  
ksA  

(1) ( 20,20) 0.035 0.036 0.035 0.033 0.035 0.030 

 (50,50) 0.040 0.039 0.041 0.039 0.040 0.037 

 (100,100) 0.042 0.042 0.042 0.039 0.042 0.038 

(2) (20,20) 0.033 0.035 0.033 0.032 0.032 0.030 

 (50,50) 0.038 0.036 0.038 0.035 0.038 0.031 

 (100,100) 0.041 0.041 0.040 0.038 0.040 0.034 

(3) (20,20) 0.033 0.032 0.032 0.030 0.031 0.028 

 (50,50) 0.037 0.035 0.037 0.035 0.036 0.032 

 (100,100) 0.043 0.039 0.042 0.040 0.041 0.035 

  

              A comparison of the proportions of type I errors for the first three forms 

(1)-(3) under true null hypothesis when the rate of outliers stands at 5% and 10% 

is also conducted at the significance level of 0.05. It is found that at such outlier 

rates, the type I errors associated with the test statistic Arks are closer to 0.05 than 

are those associated with the test statistic Aks, demonstrating that the former is 

more robust to outliers than the latter. Again, when the sample size is larger, the 

type I errors associated with the two test statistics more closely approach 0.05. 

Finally, both test statistics are relatively highly efficient in case of linear 

regression function, as shown in Tables 2.  

 

Table 2 Rejection proportions under the null hypothesis (Type I error) of model 

(1)-(3)  0.05   , when the rate of outliers stands at 5% and 10%. 

 

model sample size 
No outlier 5% outlier 10% outlier 

rksA  
ksA  

rksA  
ksA  

rksA  
ksA  

(1) ( 20,20) 0.035 0.036 0.033 0.028 0.033 0.025 

 (50,50) 0.040 0.039 0.038 0.033 0.036 0.029 

 (100,100) 0.042 0.042 0.040 0.035 0.038 0.030 

(2) (20,20) 0.033 0.035 0.031 0.028 0.033 0.028 

 (50,50) 0.038 0.036 0.035 0.030 0.035 0.030 

 (100,100) 0.041 0.041 0.038 0.032 0.038 0.030 

(3) (20,20) 0.033 0.032 0.030 0.027 0.028 0.022 

 (50,50) 0.037 0.035 0.036 0.032 0.035 0.025 

 (100,100) 0.043 0.039 0.036 0.030 0.035 0.027 

 

A comparison of the proportions of power of the test for the first three forms (4)-

(6) under alternative hypothesis when the errors are normally distributed and 

when the errors are heavy-tailed is conducted at the significance level of 0.05. The 

results show that the test statistics Arks and Aks produce a very similar degree of 

power of the test in case of normal distribution of errors. By contrast, in case of  
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90%N(0,1)+10% Cauchy, the power of the test associated with the test statistic 

Arks more closely approach 1.00  than do those associated with the test statistic 

Aks, demonstrating greater robustness of the former than the latter. Additionally, 

with a larger sample size, the power of the teat associated with both test statistics 

better approximate 1.00. Finally, the two test statistics are relatively highly 

efficient when the regression function is linear, as shown in Table 3. 

 

Table 3 Rejection proportions under the alternative hypothesis (power of the test) 

of model (4)-(6),  0.05  ,   when the distribution of error are 100% N(0,1) , 

95% N(0,1) + 5% Cauchy, and    90% N(0,1) + 10% Cauchy. 

model sample size 
100% N(0,1) 

95% N(0,1) + 5% 

Cauchy 

90% N(0,1) + 10% 

Cauchy 

rksA  
ksA  

rksA  
ksA  

rksA  
ksA  

(4) ( 20,20) 0.780 0.770 0.760 0.710 0.750 0.680 

 (50,50) 0.850 0.850 0.850 0.800 0.830 0.780 

 (100,100) 0.910 0.880 0.900 0.850 0.880 0.820 

(5) (20,20) 0.750 0.740 0.740 0.700 0.720 0.670 

 (50,50) 0.820 0.830 0.800 0.750 0.780 0.720 

 (100,100) 0.900 0.880 0.880 0.830 0.880 0.820 

(6) (20,20) 0.730 0.720 0.720 0.680 0.700 0.650 

 (50,50) 0.820 0.800 0.820 0.780 0.800 0.750 

 (100,100) 0.880 0.860 0.880 0.820 0.860 0.800 

  

A comparison of the proportions of power of the test for the first three forms (4)-

(6) under true alternative hypothesis when the rate of outliers stands at 5% and 

10% is also conducted at the significance level of 0.05. It is found that at such 

outlier rates, the power of the test associated with the test statistic Arks are closer 

to 1.00 than are those associated with the test statistic Aks, demonstrating that the 

former is more robust to outliers than the latter. Again, when the sample size is 

larger, the power of the tes associated with the two test statistics more closely 

approach 1.00. Finally, both test statistics are relatively highly efficient in case of 

linear regression function, as shown in Tables 4. 

 

Table 4 Rejection proportions under the alternative hypothesis (power of the test) 

of model (4)-(6) , 0.05  , when the rate of outliers stands at 5% and 10%. 

 

model sample size 
100% N(0,1) 

95% N(0,1) + 5% 

Cauchy 

90% N(0,1) + 10% 

Cauchy 

rksA  
ksA  

rksA  
ksA  

rksA  
ksA  

(4) ( 20,20) 0.780 0.770 0.750 0.720 0.750 0.680 

 (50,50) 0.850 0.850 0.820 0.790 0.800 0.750 

 (100,100) 0.910 0.880 0.880 0.830 0.850 0.790 

(5) (20,20) 0.750 0.740 0.720 0.680 0.720 0.680 

 (50,50) 0.820 0.830 0.820 0.780 0.800 0.720 

 (100,100) 0.900 0.880 0.890 0.840 0.880 0.800 

(6) (20,20) 0.730 0.720 0.700 0.650 0.700 0.650 

 (50,50) 0.820 0.800 0.800 0.700 0.800 0.730 

 (100,100) 0.880 0.860 0.850 0.800 0.840 0.780 
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5. Application of the data 
 

The application of the actual data used for testing the test statistic 
rksA and 

ksA are 

comprised of three data sets : the first, the independent X representing the  

average income per person in each of the 76 provinces of Thailand for 2007, 2008 

and 2014 , the dependent variable Y representing  head Count Index calculated 

from the population with consumption expenditure below the poverty line divided 

by the total population multiplied by 100 in each of the 76 provinces of Thailand 

for 2007, 2008 and 2014 [14].  The first application of the actual data is 

comparing two data sets between 2007 and 2008, details are shown in figure 7. 

Figure 7 (a) estimate regression function with Nadaraya-Watson estimator. Figure 

7 (b) estimate regression function with robust kernel regression. In this research 

we calculate the p-value of test statistics 
rksA and 

ksA from 1,000 replications of 

bootstrapping.   From Figure 2. It can be seen that the relationship between the 

independent variable X and dependent variable Y in both years are almost the 

same, the test statistics
ksA  and 

rksA  give the p-value from 1,000 replications of 

bootstrapping equals 0.188 and 0.192 respectively. This implies that, the 

relationship between independent variable X and dependent variable y of two data 

have similar, namely, accept the null hypothesis 1 2( ( ) ( ))g x g x  at 0.05 significant 

level. When we consider about the distribution of the error of the test statistic 

rksA , the result are displayed in Figure 3.  

 

 
                                 (a)                                                               (b) 
Figure 2 (a) Illustrates the scatter plot and estimate regression curves with Nadaraya 

Watson estimator of average income per person in each of the 76 provinces of 

Thailand (X) and head Count Index in each of the 76 provinces (Y). 
 

The data of 2007 are represented by circles and dash line, whereas those of 2008 

are represented by solid circles and the solid line (b) Illustrates the scatter plot and 

estimate regression curves with robust kernel regression of average income per 

person in each of the 76 provinces of Thailand (X) and head Count Index of the 

76 provinces. The data of 2007 are represented by circles and dash line, whereas 

those of 2008 are represented by solid circles and the solid line 
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                      (a)                                 (b)                                         (c) 

          
                     (d)                                      (e)                                         (f) 
Figure 3 (a) and (d)  Illustrates the Boxplot and histogram of the distribution of errors 

from robust kernel regression of  the relationship between average income per person 

in each of the 76 provinces of Thailand (X) and head Count Index of the 76 provinces 

(Y) in 2007. (b) and (e) Illustrates the Boxplot and histogram of the distribution of 

errors from robust kernel regression of  the relationship between average income per 

person in each of the 76 provinces of Thailand (X) and head Count Index of the 76 

provinces (Y) in 2008. (c) and (f) Illustrates the Boxplot and histogram of the 

distribution of errors from robust kernel regression of  the relationship between 

average income per person in each of the 76 provinces of Thailand (X) and head 

Count Index of the 76 provinces (Y) of common regression function 

 

From Figure 3, the distribution of error that estimate from robust kernel 

regression of the first regression function 
1i , the second regression function

2i , 

and the common regression function 0

ij
 are normal distribution  that not heavy 

tailed and  no outlier. This implies that under the assumption  of normal 

distribution of errors that not heavy tailed and  no outlier, the test statistics Arks 

and Aks are relatively equally efficient . 

The second application of the actual data is comparing two data sets 

between 2008 and 2014, details are shown in figure 4. Figure 4 (a) estimate 

regression function with Nadaraya-Watson estimator. Figure 4 (b) estimate 

regression function with robust kernel regression. In this research we calculate the 

p-value of test statistics 
rksA and 

ksA from 1,000 replications of bootstrapping. 

 From Figure 4. It can be seen that the relationship between the 

independent variable X and dependent variable Y in both years are almost the 

different, the test statistics
ksA  and 

rksA  give the p-value from 1,000 replications of 

bootstrapping equals 0.012 and 0.025 respectively. This implies that, the 

relationship between independent variable X and dependent variable Y of two 

data have different, namely, reject the null hypothesis at 0.05 significant level.  

When we consider about the distribution of the error of the test statistic 
rksA , the 

result are displayed in Figure 5.  
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Figure 4 (a) Illustrates the scatter plot and estimate regression curves with Nadaraya 

Watson estimator of average income per person in each of the 76 provinces of 

Thailand (X) and head Count Index calculated from the population with consumption 

expenditure below the poverty line divided by the total population multiplied by 100 

in each of the 76 provinces (Y). The data of 2008 are represented by circles and dash 

line, whereas those of 2008 are represented by solid circles and the solid line (b) 

Illustrates the scatter plot and estimate regression curves with robust kernel regression 

of average income per person in each of the 76 provinces of Thailand (X) and head 

Count Index of the 76 provinces. The data of 2014 are represented by circles and dash 

line, whereas those of 2008 are represented by solid circles and the solid line 

 

 
                  (a)                                        (b)                                         (c) 

         
                 (d)                                        (e)                                         (f) 
Figure 5  a) and d) Illustrates the Boxplot and histogram of the distribution of errors 

from robust kernel regression of  the relationship between average income per person 

in each of the 76 provinces of Thailand (X) and head Count Index of the 76 provinces 

(Y) in 2008. b) and e) Illustrates the Boxplot and histogram of the distribution of 

errors from robust kernel regression of  the relationship between average income per 

person in each of the 76 provinces of Thailand (X) and head Count Index of the 76 

provinces (Y) in 2014. c) and f) Illustrates the Boxplot and histogram of the 

distribution of errors from robust kernel regression of  the relationship between 

average income per person in each of the 76 provinces of Thailand (X) and head 

Count Index of the 76 provinces (Y) of common regression function 



770                                                                                       Unchalee Tonggumnead 

 
 

 From Figure 5, the distribution of error that estimate from robust kernel 

regression of the first regression function 
1i , the second regression function

2i , 

and the common regression function 0

ij
 are normal distribution  that have heavy 

tailed and  outlier. This implies, when the distribution of errors is heavy-tailed or 

outliers are present, the test statistics
rksA  is more robust than the test statistics

ksA  

 

6. Conclusion and Discussion 
 

This research aims to examine the equality of two data sets that having the 

relationship between the dependent and independent variable though testing the 

equality two nonparametric regression functions using two test statistics: the 

robust kernel regression (Arks), which estimates regression functions robust kernel 

regression, and the test statistic Aks, which estimates regression functions with the 

Nadaraya-Watson Estimator. The result was found that the impact of outlier and 

heavy tail distribution of error are greater for the test statistic Aks. When we 

consider about the proportions of type I errors under true null hypothesis at the 

significance level of 0.05. The results show that the test statistics Arks and Aks 

produce a very similar degree of type I errors in case of normal distribution of 

errors. By contrast, in case of 90%N(0,1)+10% Cauchy, the type I errors 

associated with the test statistic Arks more closely approach 0.05 than do those 

associated with the test statistic Aks, demonstrating greater robustness of the 

former than the latter. Meanwhile, the proportions of type I errors  under true null 

hypothesis when the rate of outliers stands at 5% and 10% is also conducted at the 

significance level of 0.05. It is found that at such outlier rates, the type I errors 

associated with the test statistic Arks are closer to 0.05 than are those associated 

with the test statistic Aks, demonstrating that the former is more robust to outliers 

than the latter.  When we consider about the proportions of power of the test under 

alternative hypothesis when the errors are normally distributed and at the 

significance level of 0.05. The results show that the test statistics Arks and Aks 

produce a very similar degree of power of the test in case of normal distribution of 

errors. By contrast, in case of 90%N(0,1)+10% Cauchy, the power of the test 

associated with the test statistic Arks more closely approach 1.00  than do those 

associated with the test statistic Aks, demonstrating greater robustness of the 

former than the latter. Meanwhile, the proportions of type I errors under true null 

hypothesis at the significance level of 0.05. It is found that at such outlier rates, 

the power of the test associated with the test statistic Arks are closer to 1.00 than 

are those associated with the test statistic Aks, demonstrating that the former is 

more robust to outliers than the latter.  From this research the findings indicate 

that when the errors are normally distributed with no outliers, the test statistics 

Arks and Aks are relatively equally efficient. In contrast, when the distribution of 

errors is heavy-tailed or outliers are present, the former is more robust than the 

latter. Thus, a test statistic like Arks provides an efficient alternative in case the 

data under investigation does not follow the predetermined assumptions in terms 

of distribution of errors or outliers.  In addition, in case the regression function is  
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linear, both test statistics are highly efficient. As for further research, it is 

recommended that the test statistics be used to compare more than two sets of data 

that involve the relationship between the independent variable X and the 

dependent variable Y by testing the equality of k regression curves, especially 

when there is more than one independent variable.   
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