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Abstract 

 

A mathematical model of neocortical pyramidal neurons was reported in a 

previous study. This model was constructed based on the Hodgkin–Huxley 

concept and is described by a system of nonlinear ordinary differential equations. 

Under certain conditions, this model shows bistable behavior, i.e., the coexistence 

of two stable solutions (one is a steady state solution, and the other is a repetitive 

spiking solution). Under such bistable conditions, a certain external perturbation 

such as current pulse stimulation can transform the dynamical state of the model 

from a steady state to a repetitive spiking state; the transformation can also occur 

in the opposite direction. The present study focused on the transition from a 

repetitive spiking to a steady state. This transition is regulated by three parameters: 

the amplitude, duration, and timing of the current pulse. However, previous 

studies did not investigate the effect of variations in these three parameters in 

detail. The present computer simulation analysis of the model varied these 

parameters to reveal in detail the conditions in which the transition occurred. 

Because of the complexity of varying these three parameters, the duration was 

fixed to be a certain short time in the present study, and only the values of 

amplitude and timing were changed. Simulation analysis revealed that at each 

timing, the transition from repetitive spiking to the steady state requires a certain 

threshold amplitude. In addition, early and late timings differed in the sensitivity 

of their threshold amplitude to variations in the timing. These results contribute to 

a deeper understanding of the bistability of the neocortical pyramidal neuron 

model. 
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1 Introduction 
 

   Mathematical models describing the dynamics of excitable cells such as neurons, 

endocrine cells, and heart cells have been extensively studied in applied 

mathematics and theoretical physics [1-4]. These models are based on the 

Hodgkin–Huxley formulation [5]. An example of the Hodgkin–Huxley type 

mathematical models that describe the neuron dynamics is the mathematical 

model of neocortical pyramidal neurons proposed by Delord et al. [6]. A system 

of nonlinear ordinary differential equations (ODEs) describes this model which 

contains three voltage-dependent ionic conductances: a fast sodium conductance, 

a fast potassium conductance, and a persistent sodium conductance. 

In addition, under certain conditions this model shows bistable behavior; under 

certain parameter conditions, both a steady state and a repetitive spiking state 

coexist. In this bistable system, transient external perturbations such as a current 

pulse stimulation can transform the dynamical state of the model from a steady 

state to a repetitive spiking state and vice versa [6-8]. In particular the condition 

of the current pulse stimulation required for the transition from repetitive spiking 

to a steady state is very complicated. The pulse’s condition is regulated by three 

parameters: amplitude, duration, and timing. Previous studies of a bistable 

circadian pacemaker neuron model reported that such a model, like the neocortical 

pyramidal neuron model, can also show the coexistence of a steady state and a 

repetitive spiking state [9, 10]. In addition, the amplitude and timing required for 

the transition of this model from a repetitive spiking to a steady state was revealed 

[10]. However, the equations for the circadian pacemaker neuron model and the 

neocortical pyramidal neuron model are slightly different. For example, the 

former model contains a calcium conductance parameter whereas the latter model 

does not. Therefore, the possibility exists that in the neocortical pyramidal neuron 

model, the amplitude and timing required for the transition from a repetitive 

spiking state to the steady state is different from those in the circadian pacemaker 

neuron model. In the present study, a computer simulation analysis of the 

neocortical pyramidal neuron model was performed to reveal the details of the 

amplitude and timing for the transition. This investigation will contribute to a 

fuller understanding of the characteristics of neuronal bistability. 

 

2 Materials and Methods 
 

   A mathematical model of neocortical pyramidal neurons was developed in a 

previous study [6] and was studied numerically in the present study. The model is 

described by a system of five coupled, nonlinear ODEs, in which state variables  
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are the neocortical pyramidal neurons’ membrane potential [V (mV)], and four 

gating variables of ionic currents (m, h, n, and mNaP). Equations (1)(5) describe 

the evolution of these state variables with time:  
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where Cm (=1 F/cm2) is the membrane capacitance; Iinj(t) is the externally 

injected current (a detailed explanation is given in the next paragraph); INaP (V, 

mNaP), INa (V, m, h), IK (V, n), and IL(V) are the persistent sodium current, fast 

sodium current, fast potassium current, and leakage current, respectively, which 

are defined in Equations (6)(9) below; x(V) (x = m, h, n), x(V) (x = m, h, n), 

NaP(V), and mNaP,∞(V) are the voltage-dependent rates of activation of the gating 

variables (i.e., m, h, and n), the voltage-dependent rates of inactivation of these 

variables, the voltage-dependent time constant of mNaP, and the voltage-dependent 

steady-state function of mNaP, respectively, which are defined in Equations 

(10)(17) below. 
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where gNaP (= 0.10 mS/cm2), gNa (= 20 mS/cm2), gK (= 2 mS/cm2), and gL (= 0.08 

mS/cm2) are the maximal conductances of INaP (V, mNaP), INa (V, m, h) IK (V, n), 

and IL(V), respectively; and VNaP (= 45 mV), VNa (= 45 mV), VK (= 85 mV), and 

VL (= 71.5 mV) are the reversal potentials of INaP (V, mNaP), INa (V, m, h), IK (V, 

n), and IL(V), respectively. Refer to [6] for detailed explanations of the Equations 

(1)(17). 

 

 

The above Equations (1)(17) were solved numerically using the free and open-

source software Scilab (http://www.scilab.org/). Initial conditions were set such 

that V = 71.5 mV, m = 0.1, h, = 0.9, n = 0.1, and mNaP = 0.1. In all the simulations, 

the total simulation time was 400 ms. The time-dependent function Iinj(t) is 

defined as follows: Iinj(t) = Iapp1 (= 60 A/cm2 in all the simulations of the present 

study) during the time interval between ton1 and toff1, while Iinj(t) = Iapp2 (Iapp2 is a 

non-positive value) during the time interval between ton2 and toff2. Otherwise Iinj(t) 

= 0. In other words, the present study uses two types of current pulse stimulation: 

Iapp1, ton1, and toff1 define the first current pulse, and Iapp2, ton2, and toff2 define the 

second. Iapp2, ton2, and toff2 ton2 correspond to the amplitude, timing, and duration,  

http://www.scilab.org/
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respectively, of the current pulse stimulation that are required to move from 

repetitive spiking to a steady state. 

 

 

3 Results 
 

   The mathematical model of neocortical pyramidal neurons shows bistable 

behavior, and stimulation by a transient positive current pulse can transform the 

dynamical state of the model from the steady state to a repetitive spiking state [6]. 

This transition was reproduced by the present study: the membrane potential’s 

time course of the model shows that a transient positive current pulse (60 A/cm2 

in amplitude and 1 ms in duration) that is applied at 50 ms can change the 

dynamical state of the model from the steady state to a repetitive spiking state 

(Figure 1A). The present study aimed to clarify the condition of the transient 

current pulse stimulation required for the transition to take place in the opposite 

direction (i.e., from repetitive spiking to the steady state). Figure 1B shows an 

example in which this transition occurs: A negative current pulse (13 A/cm2 in 

amplitude and 1 ms in duration) applied at 204 ms induces the transition from 

repetitive spiking to the steady state. In contrast, Figure 1C gives an example in 

which the transition does not occur: A negative current pulse with the same 

amplitude and duration as in Figure 1B but with a different timing does not induce 

the same transition (i.e., repetitive spiking behavior is recovered after spiking 

behavior is transiently suppressed by the negative current pulse). 

 

 

Next, we investigated in detail the dependence of the transition from repetitive 

spiking to the steady state on the current pulse conditions: amplitude [Iapp2], 

duration [toff2 ton2], and timing [ton2]. In particular, the present study fixed toff2 

ton2 to be 1 ms, and changed Iapp2 and ton2. Iapp2 was varied between 1 and 15 

A/cm2 at intervals of 1 A/cm2, and ton2 was varied between 198 and 206 ms at 

intervals of 2 ms (Figure 2A shows one cycle of repetitive spiking and the timings 

within this cycle). How the transition from repetitive spiking to the steady state 

depends on the amplitude and timing is shown in Figure 2B. At each timing, when 

Iapp2 is decreased (i.e., making the value of Iapp2 more negative) below a certain 

threshold, the current pulse induces the transition from repetitive spiking to the 

steady state. In addition, early and late timings differ quantitatively in the effect of 

variation in them on the threshold: in early timings, increasing ton2, e.g. 198 → 

200 → 202 s, slightly changes the threshold (i.e., 5 → 5 → 7 A/cm2), 

whereas in late timings, an increase in ton2 such as 202 →204 →206 s drastically 

changes the threshold (i.e., 7  → 9  → 15 A/cm2). 

 

 

 

 

 



110                                                                                                Takaaki Shirahata 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Time courses of the membrane potential of the neocortical pyramidal 

neuron model. The condition of the first current pulse is Iapp1 = 60 A/cm2, ton1 = 

50 ms, toff1 = 51 ms in (A)–(C). The condition of the second current pulse is (A) 

Iapp2 = 0 A/cm2, ton2 =  ms, toff2 = 207 ms, (B) Iapp2 = 13 A/cm2, ton2 = 204 

ms, toff2 = 205 ms, and (C) Iapp2 =  A/cm2, ton2 = 206 ms, toff2 = 207 ms. Black 

circles indicate the timing of the first current pulse, whereas white circles indicate 

the timing of the second current pulse. 
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Figure 2. The transition from repetitive spiking to the steady state depends on the 

amplitude and timing of the second current pulse. (A) Timing of the second 

current pulse (↓) within one spiking cycle that is generated by the first current 

pulse (Iapp1 = 60 A/cm2, ton1 = 50 ms, toff1 = 51 ms). (B) Combinations of the 

amplitude and timing of the second current pulse required for the transition from a 

repetitive spiking state generated by the first current pulse (Iapp1 = 60 A/cm2, ton1 

= 50 ms, toff1 = 51 ms) to the steady state. ○ indicates a condition in which the 

transition does not occur; ● indicates a condition in which the transition occurs. 

The duration of the second current pulse is fixed to 1 ms. 
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4 Discussion 
 

   In a previous study, a negative current pulse (amplitude 10 A/cm2 and 

duration 3 ms) was shown to be able to transform the dynamical state of the 

neocortical pyramidal neuron model from repetitive spiking to the steady state [7]. 

However, whether other amplitudes can induce the same transition was not 

clarified. In addition, this study did not mention the timing of the current pulse 

either. An important contribution of the present study is that it clarifies in detail 

the various combinations of amplitude and timing of the current pulse required to 

shift the dynamical state from repetitive spiking to the steady state. 

The present study is one example of bistable neuron models that can be 

transferred between different dynamical states by various combinations of 

amplitude and timing of the current pulse. Previous studies presented other 

examples: in a study of a leech neuron model the combinations of amplitude and 

timing of the current pulse required for the transition from a bursting to a steady 

state were elucidated [11], and studying a snail neuron model revealed that certain 

combinations of amplitude and timing of the current pulse caused the transition 

from a bursting to a chaotic spiking state [12]. However, these two studies and the 

present one are also different; the former studies focused on current pulse timing 

within a bursting cycle, whereas the latter study investigated the current pulse 

timing within a spiking cycle. A previous study of a circadian pacemaker neuron 

model also focused on the timing of the current pulse within a spiking cycle [10]. 

However, the neocortical pyramidal neuron model and circadian pacemaker 

neuron model differ in the sensitivity to variation in the timing of their threshold 

amplitude for the transition from repetitive spiking to the steady state: the 

sensitivity of the threshold to variation in the timing is smaller in early timing than 

in late timing in the former model, whereas in the latter model the sensitivity is 

larger in early timing than in late timing. This difference is considered to be 

related to the difference in steady states between the former and latter models: the 

former model displays a hyperpolarized steady state, whereas the latter model has 

a depolarized steady state. 

 

5 Conclusion 
 

   In the present study we did a computer simulation analysis of the neocortical 

pyramidal neuron model and studied the bistability of the model in more detail 

than in previous studies. The results of the present study contribute to the deeper 

understanding of the current pulse conditions required for the transition from 

repetitive spiking to the steady state to occur in the neocortical pyramidal neuron 

model. 
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