Semidetached B-Algebras

Young Bae Jun

Department of Mathematics Education
Gyeongsang National University
Jinju 52828, Korea

Kyoung Ja Lee*

Department of Mathematics Education
Hannam University
Daejeon 306-791, Korea

Copyright © 2017 Young Bae Jun and Kyoung Ja Lee. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The notion of semidetached B-algebra is introduced, and their properties are investigated. Several conditions for a semidetached structure to be a semidetached B-algebra are provided. Characterizations of semidetached B-algebras are considered.

Mathematics Subject Classification: 06F35, 03G25, 08A72

Keywords: Fuzzy B-algebra, semidetached B-algebra, $(\in, \in \lor q)$-fuzzy B-algebra, (right, left) $(q, \in \lor q)$-fuzzy B-algebra.

1 Introduction

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [10], played a vital role to generate some different types of fuzzy subgroups, called (α, β)-fuzzy subgroups, introduced by Bhakat and Das [1].

*Corresponding author.
In particular, \((\in, \in \lor q)\)-fuzzy subgroup is an important and useful generalization of Rosenfeld’s fuzzy subgroup. In \(B\)-algebras and \(BCK/BCI\)-algebras, the concept of \((\alpha, \beta)\)-fuzzy notions, which are studied in the papers [2], [3], [4], [5], [6], [7], [11], and [12] is also important and useful generalization of the well-known concepts, called fuzzy subalgebras. Jun et al. [9] introduced the notion of semidetached structure and applied it to \(BCK/BCI\)-algebras.

In this paper, we introduce the notion of semidetached \(B\)-algebras, and investigate their properties. We provide several conditions for a semidetached structure to be a semidetached \(B\)-algebra. We consider characterization of a semidetached \(B\)-algebra.

2 Preliminaries

A \(B\)-algebra is a set \(X\) with a constant 0 and a binary operation \('\ast'\) satisfying the axioms:

(a1) \(x \ast x = 0\),

(a2) \(x \ast 0 = x\),

(a3) \((x \ast y) \ast z = x \ast (z \ast (0 \ast y))\)

for all \(x, y, z \in X\).

A nonempty subset \(S\) of a \(B\)-algebra \(X\) is called a subalgebra of \(X\) if \(x \ast y \in S\) for all \(x, y \in S\).

A fuzzy set \(\lambda\) in a \(B\)-algebra \(X\) is called a fuzzy \(B\)-algebra of \(X\) (see [8]) if it satisfies:

\[
(\forall x, y \in X) (\lambda(x \ast y) \geq \min\{\lambda(x), \lambda(y)\}).
\]

(2.1)

For any fuzzy set \(\lambda\) in a set \(X\) and any \(t \in [0, 1]\), the set

\[
\lambda_t = \{x \in X \mid \lambda(x) \geq t\}
\]

is called a level subset of \(\lambda\).

Note that a fuzzy set \(\lambda\) in \(X\) is a fuzzy \(B\)-algebra of \(X\) if and only if \(\lambda_t\) is a subalgebra of \(X\) for all \(t \in (0, 1]\).

A fuzzy set \(\lambda\) in a set \(X\) of the form

\[
\lambda(y) := \begin{cases} t \in (0, 1] & \text{if } y = x, \\ 0 & \text{if } y \neq x, \end{cases}
\]

(2.2)

is said to be a fuzzy point with support \(x\) and value \(t\) and is denoted by \(x_t\).

For a fuzzy set \(\lambda\) in a set \(X\), a fuzzy point \(x_t\) is said to
• contained in λ, denoted by \(x_t \in \lambda \) (see [10]), if \(\lambda(x) \geq t \).
• be quasi-coincident with λ, denoted by \(x_t q \lambda \) (see [10]), if \(\lambda(x) + t > 1 \).
• \(x_t \in \triangledown q \lambda \) if \(x_t \in \lambda \) or \(x_t q \lambda \).

3 Semidetached \(B \)-algebras

In what follows, let \(X \) denote a \(B \)-algebra unless otherwise specified.

Definition 3.1 ([7]). A fuzzy set \(\lambda \) in \(X \) is called an \((\in, \in \triangledown q) \)-fuzzy \(B \)-algebra of \(X \) if it satisfies:

\[
x_t \in \lambda, \ y_r \in \lambda \Rightarrow (x \ast y)_{\min(t,r)} \in \triangledown q \lambda
\]

for all \(x, y \in X \) and \(t, r \in (0, 1] \).

Lemma 3.2 ([7]). A fuzzy set \(\lambda \) in \(X \) is an \((\in, \in \triangledown q) \)-fuzzy \(B \)-algebra of \(X \) if and only if it satisfies:

\[
\lambda(x \ast y) \geq \min\{\lambda(x), \lambda(y), 0.5\}
\]

for all \(x, y \in X \).

Given a set \(X \) and a subinterval \(\Omega \) of \([0, 1]\), a semidetached structure over \(\Omega \) is defined to be a pair \((X, f)\) where \(f : \Omega \to \mathcal{P}(X) \) is a mapping (see [9]).

Definition 3.3. A semidetached structure \((X, f)\) is called a semidetached \(B \)-algebra over \(\Omega \) with respect to \(t \in \Omega \) (briefly, \(t \)-semidetached \(B \)-algebra over \(\Omega \)) if \(f(t) \) is a \(B \)-subalgebra of \(X \) where \(\mathcal{P}(X) \) is the power set of \(X \).

We say that \((X, f)\) is a semidetached \(B \)-algebra over \(\Omega \) if it is a \(t \)-semidetached \(B \)-algebra over \(\Omega \) for all \(t \in \Omega \).

Given a fuzzy set \(\lambda \) in \(X \), consider the following mappings

\[
\mathcal{A}_U^\lambda : \Omega \to \mathcal{P}(X), \ t \mapsto \lambda_t,
\]

\[
\mathcal{A}_Q^\lambda : \Omega \to \mathcal{P}(X), \ t \mapsto Q(\lambda;t),
\]

\[
\mathcal{A}_E^\lambda : \Omega \to \mathcal{P}(X), \ t \mapsto E(\lambda;t),
\]

where \(Q(\lambda;t) := \{x \in X \mid x_t q \lambda\} \) and \(E(\lambda;t) := \{x \in X \mid x_t \in \triangledown q \lambda\} \) which are called the \(q \)-set and \(\in \triangledown q \)-set with respect to \(t \) (briefly, \(t \)-\(q \)-set and \(t \)-\(\in \triangledown q \)-set), respectively, of \(\lambda \).

Note that, for any \(t, r \in (0, 1] \), if \(t \geq r \) then every \(r \)-\(q \)-set is contained in the \(t \)-\(q \)-set, that is, \(Q(\lambda;r) \subseteq Q(\lambda;t) \). Obviously, \(E(\lambda;t) = \lambda_t \cup Q(\lambda;t) \).
Theorem 3.4. A semidetached structure \((X, \mathcal{A}_Q^\lambda) \) is a semidetached \(B \)-algebra over \(\Omega = (0, 1] \) if and only if \(\lambda \) is a fuzzy \(B \)-algebra of \(X \).

Proof. Straightforward. \(\square \)

Theorem 3.5. If \(\lambda \) is a fuzzy \(B \)-algebra of \(X \), then a semidetached structure \((X, \mathcal{A}_Q^\lambda) \) is a semidetached \(B \)-algebra over \(\Omega = (0, 1] \).

Proof. Let \(x, y \in \mathcal{A}_Q^\lambda(t) \) for \(t \in \Omega = (0, 1] \). Then \(x_t q \lambda \) and \(y_t q \lambda \), that is, \(\lambda(x) + t > 1 \) and \(\lambda(y) + t > 1 \). It follows from (2.1) that

\[
\lambda(x \ast y) + t \geq \min\{\lambda(x), \lambda(y)\} + t = \min\{\lambda(x) + t, \lambda(y) + t\} > 1.
\]

Hence \((x \ast y)_t q \lambda \), and so \(x \ast y \in \mathcal{A}_Q^\lambda(t) \). Therefore \(\mathcal{A}_Q^\lambda(t) \) is a subalgebra of \(X \) for all \(t \in \Omega \). Consequently \((X, \mathcal{A}_Q^\lambda) \) is a semidetached \(B \)-algebra over \(\Omega = (0, 1] \). \(\square \)

Using Theorems 3.4 and 3.5, we have the following corollary.

Corollary 3.6. If the semidetached structure \((X, \mathcal{A}_Q^\lambda) \) is a semidetached \(B \)-algebra over \(\Omega = (0, 1] \), then the semidetached structure \((X, \mathcal{A}_Q^\lambda) \) is a semidetached \(B \)-algebra over \(\Omega = (0, 1] \).

Definition 3.7. A fuzzy set \(\lambda \) in \(X \) is called a right \((q, \in \vee q)\)-fuzzy \(B \)-algebra of \(X \) if it satisfies:

\[
x_t q \lambda, y_r q \lambda \Rightarrow (x \ast y)_{\min\{t,r\}} \in \vee q \lambda \tag{3.6}
\]

for all \(x, y \in X \) and \(t, r \in (0.5, 1] \).

If \(\lambda \) satisfies the condition (3.6) for all \(x, y \in X \) and \(t, r \in (0, 0.5] \), then we say that \(\lambda \) is a left \((q, \in \vee q)\)-fuzzy \(B \)-algebra of \(X \). If \(\lambda \) satisfies the condition (3.6) for all \(x, y \in X \) and \(t, r \in (0, 1] \), then we say that \(\lambda \) is a \((q, \in \vee q)\)-fuzzy \(B \)-algebra of \(X \).

Theorem 3.8. Every right \((q, \in \vee q)\)-fuzzy \(B \)-algebra is an \((\in, \in \vee q)\)-fuzzy \(B \)-algebra.

Proof. Let \(\lambda \) be a right \((q, \in \vee q)\)-fuzzy \(B \)-algebra of \(X \). Let \(x, y \in X \) and \(t, r \in (0, 1] \) be such that \(x_t \in \lambda \) and \(y_r \in \lambda \). Then \(\lambda(x) \geq t \) and \(\lambda(y) \geq r \). If \((x \ast y)_{\min\{t,r\}} \in \vee q \lambda \), then \(\lambda(x \ast y) < \min\{t, r\} \) and \(\lambda(x \ast y) + \min\{t, r\} \leq 1 \). It follows that \(\lambda(x \ast y) < 0.5 \) and so that \(\lambda(x \ast y) < \min\{t, r, 0.5\} \). Hence

\[
1 - \lambda(x \ast y) > 1 - \min\{t, r, 0.5\} = \max\{1 - t, 1 - r, 1 - 0.5\} \geq \max\{1 - \lambda(x), 1 - \lambda(y), 0.5\},
\]

and thus there exists \(\delta \in (0, 1] \) such that

\[
1 - \lambda(x \ast y) \geq \delta > \max\{1 - \lambda(x), 1 - \lambda(y), 0.5\}. \tag{3.7}
\]
The right inequality in (3.7) implies that \(\delta > 0.5, \lambda(x) + \delta > 1 \) and \(\lambda(y) + \delta > 1 \), that is, \(x_\delta q \lambda \) and \(y_\delta q \lambda \). Since \(\lambda \) is a right \((q, \in \lor q)\)-fuzzy \(B\)-algebra of \(X\), it follows that \((x * y)_\delta \in \lor q \lambda \). On the other hand, the left inequality in (3.7) implies that \(\lambda(x * y) + \delta \leq 1 \), that is, \((x * y)_\delta q \lambda \) and \(\lambda(x * y) \leq 1 - \delta < 1 - 0.5 = 0.5 < \delta \), i.e., \((x * y)_\delta \in \lor q \lambda \). Hence \((x * y)_\delta \in \lor q \lambda \), which is a contradiction. Therefore \((x * y)_{\min\{t,r\}} \in \lor q \lambda \), and thus \(\lambda \) is an \((\in, \lor q)\)-fuzzy \(B\)-algebra of \(X\).

Theorem 3.9. If every fuzzy point has the value \(t \in (0, 0.5] \), then every \((\in, \lor q)\)-fuzzy \(B\)-algebra is a left \((q, \in \lor q)\)-fuzzy \(B\)-algebra.

Proof. Let \(\lambda \) be an \((\in, \lor q)\)-fuzzy \(B\)-algebra of \(X\). Let \(x, y \in X \) and \(t, r \in (0, 0.5] \) be such that \(x_\in q \lambda \) and \(y_\in q \lambda \). Then \(\lambda(x) + t > 1 \) and \(\lambda(y) + r > 1 \). Since \(t, r \in (0, 0.5] \), it follows that \(\lambda(x) > 1 - t \geq 0.5 \geq t \) and \(\lambda(y) > 1 - r \geq 0.5 \geq r \), that is, \(x_\in q \lambda \) and \(y_\in q \lambda \). It follows from (3.1) that \((x * y)_{\min\{t,r\}} \in \lor q \lambda \). Therefore \(\lambda \) is a left \((q, \in \lor q)\)-fuzzy \(B\)-algebra of \(X\).

Corollary 3.10. If every fuzzy point has the value \(t \in (0, 0.5] \), then every right \((q, \in \lor q)\)-fuzzy \(B\)-algebra is a left \((q, \in \lor q)\)-fuzzy \(B\)-algebra.

Proposition 3.11. If \((X, \mathcal{A}_Q^\lambda) \) is a semidetached \(B\)-algebra over \(\Omega = (0.5, 1] \), then \(\lambda \) satisfies:

\[
x_t \in \lambda, \ y_r \in \lambda \Rightarrow (x * y)_{\max\{t,r\}} q \lambda
\]

for all \(x, y \in X \) and \(t, r \in \Omega \).

Proof. Let \(x, y \in X \) and \(t, r \in \Omega = (0.5, 1] \) be such that \(x_\in q \lambda \) and \(y_\in q \lambda \). Then \(\lambda(x) \geq t > 0.5 \) and \(\lambda(y) \geq r > 0.5 \), which imply that \(\lambda(x) + t > 1 \) and \(\lambda(y) + r > 1 \), that is, \(x_\in q \lambda \) and \(y_\in q \lambda \). It follows that \(x, y \in \mathcal{A}_Q^\lambda(\max\{t,r\}) \) and \(\max\{t,r\} \in (0.5, 1] \). Since \(\mathcal{A}_Q^\lambda(\max\{t,r\}) \) is a subalgebra of \(X \) by assumption, we have \(x * y \in \mathcal{A}_Q^\lambda(\max\{t,r\}) \) and so \((x * y)_{\max\{t,r\}} q \lambda \).

Proposition 3.12. If \((X, \mathcal{A}_Q^\lambda) \) is a semidetached \(B\)-algebra over \(\Omega = (0, 0.5] \), then \(\lambda \) satisfies:

\[
x_t q \lambda, \ y_r q \lambda \Rightarrow (x * y)_{\max\{t,r\}} q \lambda, \ (x * y)_{\max\{t,r\}} \in \lambda
\]

for all \(x, y \in X \) and \(t, r \in \Omega \).

Proof. Let \(x, y \in X \) and \(t, r \in \Omega = (0, 0.5] \) be such that \(x_\in q \lambda \) and \(y_\in q \lambda \). Then \(x \in \mathcal{A}_Q^\lambda(t) \) and \(y \in \mathcal{A}_Q^\lambda(r) \). It follows that \(x, y \in \mathcal{A}_Q^\lambda(\max\{t,r\}) \) and \(\max\{t,r\} \in \Omega = (0, 0.5] \). Thus \(x * y \in \mathcal{A}_Q^\lambda(\max\{t,r\}) \) since \(\mathcal{A}_Q^\lambda(\max\{t,r\}) \) is a subalgebra of \(X \) by the assumption. Hence \((x * y)_{\max\{t,r\}} q \lambda \). Also, \(\lambda(x * y) > 1 - \max\{t,r\} \geq 0.5 \geq \max\{t,r\} \). Thus \((x * y)_{\max\{t,r\}} \in \lambda \), and (3.9) is valid.
Corollary 3.13. If $(X, A_Q^λ)$ is a semidetached B-algebra over $Ω = (0, 0.5]$, then $λ$ satisfies:

$$x_t q λ, \ y_r q λ \Rightarrow (x * y)_{\max\{t, r\}} \in \land q λ$$

(3.10)

for all $x, y \in X$ and $t, r \in Ω$.

Theorem 3.14. If $λ$ is a right $(q, ∈\lor q)$-fuzzy B-algebra of X, then $(X, A_Q^λ)$ is a semidetached B-algebra over $Ω = (0.5, 1]$

Proof. Let $x, y \in A_Q^λ(t)$ for $t \in (0.5, 1]$. Then $x_t q λ$ and $y_r q λ$. Since $λ$ is a right $(q, ∈\lor q)$-fuzzy B-algebra of X, we have $(x * y)_t ∈ \lor q λ$, that is, $(x * y)_t ∈ λ$ or $(x * y)_t q λ$. If $(x * y)_t ∈ λ$, then $λ(x * y) ≥ t > 0.5 > 1 − t$ and so $λ(x * y) + t > 1$, i.e., $(x * y)_t q λ$. Hence $x * y \in A_Q^λ(t)$. If $(x * y)_t q λ$, then $x * y \in A_Q^λ(t)$. Therefore $A_Q^λ(t)$ is a subalgebra of X for all $t \in (0.5, 1]$, and consequently $(X, A_Q^λ)$ is a semidetached B-algebra over $Ω = (0.5, 1]$. □

Corollary 3.15. Every right $(q, ∈\lor q)$-fuzzy B-algebra $λ$ of X satisfies the condition (3.8).

Proof. It is by Proposition 3.11 and Theorem 3.14. □

Theorem 3.16. For a subalgebra S of X, let $λ$ be a fuzzy set in X such that

(1) $λ(x) ≥ 0.5$ for all $x ∈ S$,

(2) $λ(x) = 0$ for all $x ∈ X \setminus S$.

Then $λ$ is a left $(q, ∈\lor q)$-fuzzy B-algebra of X.

Proof. Let $x, y \in X$ and $t, r ∈ (0, 0.5]$ be such that $x_t q λ$ and $y_r q λ$. Then $λ(x) + t > 1$ and $λ(y) + r > 1$, which imply that $λ(x) > 1 − t ≥ 0.5$ and $λ(y) > 1 − r ≥ 0.5$. Hence $x ∈ S$ and $y ∈ S$. Since S is a subalgebra of X, we get $x * y ∈ S$ and so $λ(x * y) ≥ 0.5 ≥ \max\{t, r\}$. Thus $(x * y)_{\max\{t, r\}} ∈ λ$, and so $(x * y)_{\max\{t, r\}} \in \lor q λ$. Therefore $λ$ is a left $(q, ∈\lor q)$-fuzzy B-algebra of X. □

Theorem 3.17. If a fuzzy set $λ$ in X satisfies the condition

$$x_t ∈ λ, \ y_r ∈ λ \Rightarrow (x * y)_{\min\{t, r\}} q λ$$

(3.11)

for all $x, y ∈ X$ and $t, r ∈ Ω = (0, 0.5]$, then $(X, A_Q^λ)$ is a semidetached B-algebra over $Ω = (0, 0.5]$.

Proof. Let $x, y ∈ A_Q^λ(t)$ for $t ∈ Ω = (0, 0.5]$. Then $x_t q λ$ and $y_r q λ$, that is, $λ(x) + t > 1$ and $λ(y) + r > 1$. Since $t ≤ 0.5$, it follows that $λ(x) > 1 − t ≥ t$ and $λ(y) > 1 − t ≥ t$. Thus $x_t ∈ λ$ and $y_r ∈ λ$, which imply from (3.11) that $(x * y)_t q λ$. Hence $x * y ∈ A_Q^λ(t)$ and so $A_Q^λ(t)$ is a subalgebra of X for all $t ∈ Ω = (0, 0.5]$. Therefore $(X, A_Q^λ)$ is a semidetached B-algebra over $Ω = (0, 0.5]$. □
Corollary 3.18. If a fuzzy set λ in X satisfies the condition (3.11), then it satisfies the condition (3.9).

Proof. It is by Proposition 3.12 and Theorem 3.17.

Proposition 3.19. If (X, A^λ_5) is a semidetached B-algebra over $\Omega = (0, 1]$, then λ satisfies:

$$x_t q \lambda, y_r q \lambda \Rightarrow (x * y)_{\max\{t, r\}} \in \lor q \lambda \quad (3.12)$$

for all $x, y \in X$ and $t, r \in \Omega$.

Proof. Let $x, y \in X$ and $t, r \in \Omega = (0, 1]$ be such that $x_t q \lambda$ and $y_r q \lambda$. Then $x \in A^\lambda_5(t) \subseteq A^\lambda_5(t)$ and $y \in A^\lambda_5(r) \subseteq A^\lambda_5(r)$. It follows that $x, y \in A^\lambda_5(\max\{t, r\})$ and so from the hypothesis that $x * y \in A^\lambda_5(\max\{t, r\})$. Hence $(x * y)_{\max\{t, r\}} \in \lor q \lambda$, and consequently (3.12) is valid.

Theorem 3.20. If λ is an $(\in, \lor q)$-fuzzy B-algebra of X, then (X, A^λ_5) is a semidetached B-algebra over $\Omega = (0.5, 1]$.

Proof. Let $x, y \in A^\lambda_5(t)$ for $t \in \Omega = (0.5, 1]$. Then $x_t q \lambda$ and $y_t q \lambda$, that is, $\lambda(x) + t > 1$ and $\lambda(y) + t > 1$. It follows that $\lambda(x * y) + t \geq \min\{\lambda(x), \lambda(y), 0.5\} + t = \min\{\lambda(x) + t, \lambda(y) + t, 0.5 + t\} > 1$ by Lemma 3.2. Hence $(x * y)_t q \lambda$, and so $x * y \in A^\lambda_5(t)$. Therefore $A^\lambda_5(t)$ is a subalgebra of X for all $t \in (0.5, 1]$, that is, (X, A^λ_5) is a semidetached B-algebra over $\Omega = (0.5, 1]$.

Corollary 3.21. Every $(\in, \lor q)$-fuzzy B-algebra λ of X satisfies the condition (3.8).

Proof. It is by Proposition 3.11 and Theorem 3.20.

Theorem 3.22. If (X, A^λ_5) is a semidetached B-algebra over $\Omega = (0, 1]$, then λ is an $(\in, \lor q)$-fuzzy B-algebra of X.

Proof. For a semidetached B-algebra (X, A^λ_5) over $\Omega = (0, 1]$, assume that there exists $a, b \in X$ such that $\lambda(a * b) < \min\{\lambda(a), \lambda(b), 0.5\} = t_0$. Then $t_0 \in (0, 0.5]$ and $a, b \in U(\lambda; t_0) \subseteq A^\lambda_5(t_0)$, which implies that $a * b \in A^\lambda_5(t_0)$. Hence $\lambda(a * b) \geq t_0$ or $\lambda(a * b) + t_0 > 1$. This is a contradiction. Thus $\lambda(x * y) \geq \min\{\lambda(x), \lambda(y), 0.5\}$ for all $x, y \in X$. It follows from Lemma 3.2 that λ is an $(\in, \lor q)$-fuzzy B-algebra of X.

Corollary 3.23. If (X, A^λ_5) is a semidetached B-algebra over $\Omega = (0, 1]$, then (X, A^λ_5) is a semidetached B-algebra over $\Omega = (0.5, 1]$.

Theorem 3.24. If λ is an $(\in, \lor q)$-fuzzy B-algebra of X, then (X, A^λ_5) is a semidetached B-algebra over $\Omega = (0, 0.5]$.
Proof. Let \(x, y \in \mathcal{A}_E^t(t) \) for \(t \in \Omega = (0, 0.5] \). Then \(x_t \in \vee q \lambda \) and \(y_t \in \vee q \lambda \). Hence we have the following four cases:

(1) \(x_t \in \lambda \) and \(y_t \in \lambda \),

(2) \(x_t \in \lambda \) and \(y_t q \lambda \),

(3) \(x_t q \lambda \) and \(y_t \in \lambda \),

(4) \(x_t q \lambda \) and \(y_t q \lambda \).

The first case implies that \((x \ast y)_t \in \vee q \lambda \) and so \(x \ast y \in \mathcal{A}_E^t(t) \). For the second case, \(y_t q \lambda \) induces \(\lambda(y) > 1 - t \geq t \), i.e., \(y_t \in \lambda \). Hence \((x \ast y)_t \in \vee q \lambda \) and so \(x \ast y \in \mathcal{A}_E^t(t) \). Similarly, the third case implies \(x \ast y \in \mathcal{A}_E^t(t) \). The last case induces \(\lambda(x) > 1 - t \geq t \) and \(\lambda(y) > 1 - t \geq t \), that is, \(x_t \in \lambda \) and \(y_t \in \lambda \). It follows that \((x \ast y)_t \in \vee q \lambda \) and so \(x \ast y \in \mathcal{A}_E^t(t) \). Therefore \(\mathcal{A}_E^t(t) \) is a subalgebra of \(X \) for all \(t \in (0, 0.5] \). Hence \((X, \mathcal{A}_E^t) \) is a semidetached \(B \)-algebra over \(\Omega = (0, 0.5] \).

Corollary 3.25. If \(\lambda \) is a right \((q, \in \vee q)\)-fuzzy \(B \)-algebra of \(X \), then \((X, \mathcal{A}_E^t) \) is a semidetached \(B \)-algebra over \(\Omega = (0, 0.5] \).

Proof. It is by Theorems 3.8 and 3.24.

Theorem 3.26. If \((X, \mathcal{A}_E^t) \) is a semidetached subalgebra over \(\Omega := (0.5, 1] \), then so is \((X, \mathcal{A}_Q^t) \).

Proof. Let \(x, y \in \mathcal{A}_E^t(t) \) for \(t \in \Omega = (0.5, 1] \). Then \(x_t q \lambda \) and \(y_t q \lambda \), which imply that \(x_t \in \vee q \lambda \) and \(y_t \in \vee q \lambda \). Hence \(x, y \in \mathcal{A}_E^t(t) \), and so \(x \ast y \in \mathcal{A}_E^t(t) \) since \(\mathcal{A}_E^t(t) \) is a subalgebra of \(X \) for all \(t \in \Omega = (0.5, 1] \). It follows that \((x \ast y)_t \in \vee q \lambda \), that is \((x \ast y)_t \in \lambda \) or \((x \ast y)_t q \lambda \). In either case, we have \((x \ast y)_t q \lambda \) since \(\Omega = (0.5, 1] \). Hence \(x \ast y \in \mathcal{A}_E^t(t) \) for all \(t \in \Omega = (0.5, 1] \), and therefore \((X, \mathcal{A}_E^t) \) is a semidetached subalgebra over \(\Omega := (0.5, 1] \).

Theorem 3.27. If \(\lambda \) is a right \((q, \in \vee q)\)-fuzzy \(B \)-algebra of \(X \), then \((X, \mathcal{A}_E^t) \) is a semidetached \(B \)-algebra over \(\Omega = (0.5, 1] \).

Proof. Let \(x, y \in \mathcal{A}_E^t(t) \) for \(t \in \Omega = (0.5, 1] \). Then \(x_t \in \vee q \lambda \) and \(y_t \in \vee q \lambda \). Hence we have the following four cases:

(1) \(x_t \in \lambda \) and \(y_t \in \lambda \),

(2) \(x_t \in \lambda \) and \(y_t q \lambda \),

(3) \(x_t q \lambda \) and \(y_t \in \lambda \),

(4) \(x_t q \lambda \) and \(y_t q \lambda \).
For the first case, we have $\lambda(x) + t \geq 2t > 1$ and $\lambda(y) + t \geq 2t > 1$, that is, $x, q \lambda$ and $y, q \lambda$. Hence $(x \ast y)_t \in \bigvee q \lambda$, and so $x \ast y \in A^\lambda(t)$. In the case (2), $x, t \in \lambda$ implies $\lambda(x) + t \geq 2t > 1$, i.e., $x, q \lambda$. Hence $(x \ast y)_t \in \bigvee q \lambda$, and so $x \ast y \in A^\lambda(t)$. Similarly, the third case implies $x \ast y \in A^\lambda(t)$. For the last case, we have $(x \ast y)_t \in \bigvee q \lambda$, and so $x \ast y \in A^\lambda(t)$. Consequently, $A^\lambda(t)$ is a subalgebra of X for all $t \in \Omega = (0, 1]$. Therefore (X, A^λ) is a semidetached B-algebra over $\Omega = (0.5, 1]$. □

By Theorems 3.26 and 3.27, we have the following corollary.

Corollary 3.28. If λ is a right $(q, \in \vee q)$-fuzzy B-algebra of X, then (X, A^λ_Q) is a semidetached B-algebra over $\Omega = (0.5, 1]$.

References

Received: February 8, 2017; Published: February 25, 2017