Buffon-Laplace Type Problem for a Lattice with Cell Composed by Four Triangles and a Rhombus

David Barilla
Department of Economics, University of Messina
Via dei Verdi, 75
98122, Messina Italy

Marius Stoka
Sciences Academy of Turin
Via Maria Vittoria, 3
10123, Torino, Italy

Copyright © 2016 David Barilla and Marius Stoka. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
In this paper we study a Buffon-Laplace type problem for a lattice with a cell composed by four triangles and a rhombus. In other words, we compute the probability that a segment of a random position and of constant length intersects a side of the lattice.

Mathematics Subject Classification: 60D05, 52A22

Keywords: Geometric Probability, stochastic geometry, random sets, random convex sets and integral geometry

1 Introduction
Poincaré [6] and Stoka [7] have obtained the fundamental results for the most important problems of geometric problems and in particular the Buffon-Laplace
type problems. In the recent years various authors have considered several Buffon-Lapalce type problems for particular fundamental cells [1], [2], [3], [4] and [5]. Starting from these results, in this paper we consider as fundamental cell a lattice composed by four isosceles triangles and a rhombus and the Laplace type problem was solved, considering the geometric point of view. We computed the probability that a random segment of constant length intersects the fundamental cell represented in fig. 1.

2 Main Results

Let $\mathcal{R}(a, b; \alpha)$ be the lattice with fundamental cell C_0 represented in fig. 1

\[|EF| = |FG| = |GH| = |HE| = \frac{1}{2} \sqrt{a^2 + b^2}; \quad (1) \]

\[\overline{FEH} = 2\alpha, \quad \sin \alpha = \frac{a}{\sqrt{a^2 + b^2}}, \quad \cos \alpha = \frac{b}{\sqrt{a^2 + b^2}}; \quad (2) \]

\[areaC_{01} = areaC_{02} = areaC_{03} = areaC_{04} = \frac{ab}{8}, \quad areaC_{05} = \frac{ab}{2}. \quad (3) \]

We want to compute the probability that a segment s with random position and of constant length $l < \frac{a}{2}$ intersects a side of lattice \mathcal{R}, i.e. the probability P_{int} that s intersects a side of the fundamental cell C_0.
The position of the segment s is determined by its centre and by the angle φ formed with the line BC (or AD).

To compute the probability P_{int} we considered the limiting positions of segment s, for a specified value of φ, in the cells C_{0i} ($i = 1, 2, ..., 5$).

Thus we have fig. 2

![Diagram](image_url)

and the relationships

$$area \hat{C}_{01}(\varphi) = area \hat{C}_{03}(\varphi) = area C_{01} - \sum_{i=1}^{5} area a_i(\varphi),$$

(4)

$$area \hat{C}_{02}(\varphi) = area \hat{C}_{04}(\varphi) = area C_{02} - \sum_{i=1}^{5} area b_i(\varphi),$$

(5)

$$area \hat{C}_{05}(\varphi) = area C_{05} - \sum_{i=1}^{6} area c_i(\varphi).$$

(6)

By fig.2 we have:

$$area a_1(\varphi) = \frac{l^2}{4} \sin 2\varphi,$$

$$area a_2(\varphi) = \frac{al}{4} \cos \varphi - \frac{l^2}{4} \sin 2\varphi,$$

$$area a_4(\varphi) = \frac{l^2 \sin \varphi \sin(\varphi - \alpha)}{2 \sin \alpha},$$
\[
\text{areaa}_5 (\varphi) = \frac{bl}{4} \sin \varphi - \frac{l^2}{4} \sin 2\varphi - \frac{l^2}{2a} (l \sin \varphi - a \cos \varphi),
\]
\[
\text{areaa}_3 (\varphi) = \frac{l\sqrt{a^2 + b^2}}{4} \sin (\varphi - \alpha) - \frac{l^2 \sin \varphi \sin (\varphi - \alpha)}{2 \sin \alpha}.
\]
\[
A_1 (\varphi) = \sum_{i=1}^{5} \text{areaa}_i (\varphi) = \frac{bl}{2} \sin \varphi - \frac{l^2}{4} \sin 2\varphi - \frac{l^2}{2a} (b \sin \varphi - a \cos \varphi).
\]

For \(\text{areaA}_{02} (\varphi)\) we have:
\[
\text{areab}_1 (\varphi) = \frac{l^2 \cos \varphi \sin (\varphi + \alpha)}{2 \cos \alpha},
\]
\[
\text{areab}_2 (\varphi) = \frac{al}{4} \cos \varphi - \frac{l^2 \cos \varphi \sin (\varphi + \alpha)}{2 \cos \alpha},
\]
\[
\text{areab}_4 (\varphi) = \frac{l^2 \sin \varphi \sin (\varphi + \alpha)}{2 \sin \alpha},
\]
\[
\text{areab}_3 (\varphi) = \frac{bl}{4} \sin \varphi - \frac{l^2 \sin \varphi \sin (\varphi + \alpha)}{2 \sin \alpha},
\]
\[
\text{areab}_5 (\varphi) = \frac{l}{4} (b \sin \varphi + a \cos \varphi) - \frac{l^2}{4} \left[2 \sin 2\varphi + \left(\frac{a}{b} - \frac{b}{a} \right) \cos 2\varphi + \frac{a}{b} + \frac{b}{a} \right].
\]

We have:
\[
A_2 (\varphi) = \sum_{i=1}^{5} \text{areab}_i (\varphi) = \frac{l}{2} (a \cos \varphi + b \sin \varphi) - \frac{l^2}{4} \left[2 \sin 2\varphi + \left(\frac{a}{b} - \frac{b}{a} \right) \cos 2\varphi + \frac{a}{b} + \frac{b}{a} \right].
\]

(7)

For \(\text{areaAC}_{03} (\varphi)\) we have:
\[
\text{areac}_1 (\varphi) = \frac{l^2 \sin (\varphi + \alpha) \sin (\varphi + 3\alpha)}{2 \sin 2\alpha},
\]
\[
\text{areac}_6 (\varphi) = \frac{l\sqrt{a^2 + b^2}}{4} \sin (\varphi + 3\alpha) - \frac{l^2 \sin (\varphi + \alpha) \sin (\varphi + 3\alpha)}{2 \sin 2\alpha},
\]
areac\(_2\) (\(\varphi\)) = \frac{l\sqrt{a^2 + b^2}}{4} \sin (\varphi + \alpha) - \frac{l^2}{2 \sin 2\alpha} \sin (\varphi + \alpha) \sin (\varphi + 3\alpha),

areac\(_3\) (\(\varphi\)) = \frac{l\sqrt{a^2 + b^2}}{4} \sin (\varphi + 3\alpha) - \frac{l^2 \sin (\varphi + \alpha) \sin (\varphi + 3\alpha)}{2 \sin 2\alpha},

areac\(_4\) (\(\varphi\)) = \frac{l^2 \sin (\varphi + \alpha) \sin (\varphi + 3\alpha)}{2 \sin 2\alpha}.

We have:

\[
A_5 (\varphi) = \sum_{i=1}^{6} \text{areac}_i (\varphi) = \frac{l}{2} (b \sin \varphi + a \cos \varphi) + \frac{l}{2 (a^2 + b^2)} \left[b \left(b^2 - 3a^2 \right) \sin \varphi + a \left(3b^2 - a^2 \right) \cos \varphi \right] - \frac{l^2}{2ab (a^2 + b^2)} \left[2ab \left(b^2 - a^2 \right) \sin 2\varphi + \frac{1}{2} \left(6a^2b^2 - a^4 - b^4 \right) \cos 2\varphi + \frac{1}{2} \left(b^4 - a^4 \right) \right].
\]

Denoting by \(M_i (i = 1, 2, ..., 5)\) the set of segments \(s\) which have their centre in \(C_{0i}\) and with \(N_i\) the set of segments \(s\) contained in the cell \(C_{0i}\), we have (cf. [7]):

\[
P_{\text{int}} = 1 - \sum_{i=1}^{5} \frac{\mu (N_i)}{\sum_{i=1}^{5} \mu (M_i)}, \tag{8}
\]

where \(\mu\) is the Lebesgue measure in the Euclidean plane.

To compute the above measure \(\mu (M_i)\) and \(\mu (N_i)\) we used the Poincaré kinematic measure (cf. [6]):

\[
dk = dx \wedge dy \wedge d\varphi,
\]

where \(x, y\) are the coordinates of centre of \(s\) and \(\varphi\) the fixed angle.

By fig. 2 we have that for the cells \(C_{01}\) and \(C_{03}\) that \(\varphi \in [0, \alpha]\), for the cells \(C_{02}\) and \(C_{04}\) we have \(\varphi \in \left[0, \frac{\pi}{2} \right]\) and for the cell \(C_{05}\) we have \(\varphi \in [\alpha, \pi - \alpha]\).

Considering formula (3) we have

\[
\mu (M_1) = \mu (M_3) = \int_{0}^{\alpha} d\varphi \int_{\{(x,y)\in C_{01}\}} dxdy =
\]
\[
\int_0^{\alpha} (\text{area} C_{01}) \, d\varphi = \alpha \text{area} C_{01} = \frac{\alpha ab}{8},
\]

\[
\mu (M_2) = \mu (M_4) = \int_0^{\frac{\pi}{2}} \int \int_{\{(x,y) \in C_{02}\}} dxdy =
\]

\[
\int_0^{\frac{\pi}{2}} (\text{area} C_{02}) \, d\varphi = \frac{\pi}{2} \text{area} C_{02} = \frac{\pi ab}{16},
\]

\[
\mu (M_5) = \int_{\alpha}^{\pi-\alpha} d\varphi \int \int_{\{(x,y) \in C_{05}\}} dxdy =
\]

\[
\int_{\alpha}^{\pi-\alpha} (\text{area} C_{05}) \, d\varphi = (\pi - 2\alpha) \text{area} C_{05} = \left(\frac{\pi}{2} - \alpha\right) ab.
\]

Then

\[
\sum_{i=1}^{5} \mu (M_i) = (5\pi - 6\alpha) \frac{ab}{8}. \tag{9}
\]

\[
\mu (N_1) = \mu (N_3) = \int_0^{\alpha} d\varphi \int \int_{\{(x,y) \in \hat{C}_{01}\}} dxdy =
\]

\[
\int_0^{\alpha} \left[\text{area} \hat{C}_{01} (\varphi) \right] \, d\varphi =
\]

\[
\int_0^{\alpha} [\text{area} C_{01} - A_1 (\varphi)] \, d\varphi = \frac{\alpha ab}{8} - \int_0^{\alpha} [A_1 (\varphi)] \, d\varphi,
\]

\[
\mu (N_2) = \mu (N_4) = \int_0^{\frac{\pi}{2}} \int \int_{\{(x,y) \in \hat{C}_{02}\}} dxdy =
\]

\[
\int_0^{\frac{\pi}{2}} [\text{area} \hat{C}_{02} (\varphi)] \, d\varphi = \int_0^{\frac{\pi}{2}} [\text{area} C_{02} - A_2 (\varphi)] \, d\varphi =
\]

\[
\frac{\pi ab}{16} - \int_0^{\frac{\pi}{2}} [A_2 (\varphi)] \, d\varphi,
\]

\[
\mu (N_5) = \int_{\alpha}^{\pi-\alpha} d\varphi \int \int_{\{(x,y) \in \hat{C}_{05}\}} dxdy =
\]

\[
\int_{\alpha}^{\pi-\alpha} [\text{area} \hat{C}_{05} (\varphi)] \, d\varphi = \int_{\alpha}^{\pi-\alpha} [\text{area} C_{05} - A_5 (\varphi)] \, d\varphi =
\]

\[
\left(\frac{\pi}{2} - \alpha\right) ab - \int_{\alpha}^{\pi-\alpha} [A_5 (\varphi)] \, d\varphi.
\]
Replacing we have

\[\sum_{i=1}^{5} \mu(N_i) = \frac{(5\pi - 6\alpha)}{2} \left[a + 2b - \frac{b(3a^2 - b^2)}{a^2 + b^2} \cos \alpha \right] \]

\[l^2 \left[\sin \alpha + \frac{b}{a} (\cos \alpha - 1) - \frac{3}{4} - \frac{1}{4} \cos 2\alpha - \frac{\pi (a^2 + b^2)}{4ab} + \right. \]

\[\left. \frac{(6a^2b^2 - a^4 - b^4) \sin 2\alpha + 2(a^4 - b^4)}{8ab(a^2 + b^2)} \right]. \quad (10) \]

The formulas (8), (9), and (10) give

\[P_{int} = \frac{8}{(5\pi - 6\alpha) ab} \left\{ l \left[a + 2b - \frac{b(3a^2 - b^2)}{a^2 + b^2} \cos \alpha \right] + \right. \]

\[\left. l^2 \left[\sin \alpha + \frac{b}{a} (\cos \alpha - 1) - \frac{3}{4} - \frac{1}{4} \cos 2\alpha - \frac{\pi (a^2 + b^2)}{4ab} + \right. \right. \]

\[\left. \left. \frac{(6a^2b^2 - a^4 - b^4) \sin 2\alpha + 2(a^4 - b^4)}{8ab(a^2 + b^2)} \right\} \right\}, \]

where \(\alpha = \arctg \frac{a}{b} \).

In particular if \(a = b \), \(\alpha = \frac{\pi}{4} \) hence the probability \(P_{int} \) become

\[P_{int} = \frac{8}{7\pi} \left[(6 + \sqrt{2}) \frac{l}{a} - (3 - 2\sqrt{2} + \pi) \left(\frac{l}{a} \right)^2 \right]. \]

References

Received: July 15, 2016; Published: March 1, 2017