Restrained Independent 2-Domination in the Join and Corona of Graphs

Rene E. Leonida, Mae P. Militante and Rowel C. Allosa

Mathematics Department
College of Natural Sciences and Mathematics
Mindanao State University
General Santos City, Philippines

Copyright © 2017 Rene E. Leonida, Mae P. Militante and Rowel C. Allosa. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A restrained independent 2-dominating set of a graph G is a set S of vertices of G such that every vertex not in S is dominated at least twice and adjacent to at least one vertex not in S, and every pair of vertices in S are not adjacent. In this paper, we characterized the restrained independent 2-dominating sets of the join and corona of graphs and calculate their restrained independent 2-domination numbers.

Mathematics Subject Classification: 05C69

Keywords: domination, independent domination, 2-domination, independent 2-domination, restrained independent 2-domination

1 Introduction and Preliminary Results

Let $G = (V(G), E(G))$ be an undirected graph. A set $S \subseteq V(G)$ is an independent set of G if for every $x, y \in S$, $xy \notin E(G)$. A set $S \subseteq V(G)$ is a restrained set of G if for every $x \in V(G) \setminus S$, there exists $y \in V(G) \setminus S$ such that $xy \in E(G)$.

A set $S \subseteq V(G)$ is a dominating set of G if for every $v \in V(G) \setminus S$, there exists $u \in S$ such that $uv \in E(G)$. The domination number of G, denoted by
$\gamma(G)$, is the smallest cardinality of a dominating set of G. A set $S \subseteq V(G)$ is a 2-dominating set of G if for every $v \in V(G) \setminus S$, $|S \cap N_G(v)| \geq 2$. The 2-domination number of G, denoted by $\gamma_2(G)$, is the smallest cardinality of a 2-dominating set of G. A set $S \subseteq V(G)$ is a restrained 2-dominating set of G if S is a restrained set and a 2-dominating set of G. The restrained 2-domination number of G, denoted by $\gamma_{r2}(G)$, is the smallest cardinality of a restrained 2-dominating set of G. A set $S \subseteq V(G)$ is an independent 2-dominating set of G if S is an independent set and a 2-dominating set of G. The independent 2-domination number of G, denoted by $i_2(G)$, is the smallest cardinality of an independent 2-dominating set of G. A set $S \subseteq V(G)$ is a restrained independent 2-dominating set of G if S is an independent set, a restrained set, and a 2-dominating set of G. The restrained independent 2-domination number of G, denoted by $i_{r2}(G)$, is the smallest cardinality of a restrained independent 2-dominating set of G.

The concept of 2-domination and restrained 2-domination was studied in [1] and [3], respectively. In [2] and [4], the 2-domination and the restrained 2-domination of the join and corona of graphs were studied. For more details on domination and its variations, see [5].

Remark 1.1 Every leaf of a graph is contained in a restrained independent 2-dominating set.

Remark 1.2 The complete graph has no restrained independent 2-dominating set.

2 Join of Graphs

The join of two graphs G and H, denoted by $G + H$, is the graph with vertex-set $V(G + H) = V(G) \cup V(H)$ and edge-set $E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$.

Lemma 2.1 If m and n are positive integers both greater than or equal to two, then $i_{r2}(K_m + K_n) = n$.

Proof: Let S be a minimum restrained independent 2-dominating set of $K_m + K_n$. By Remark 1.1, K_m has no restrained independent 2-dominating set. Thus, $S = V(K_n)$ is a minimum restrained independent 2-dominating set of K_n. Hence, $i_{r2}(K_m + K_n) = |S| = n$. \qed

Lemma 2.2 Let G be a graph with no isolates and $n \geq 2$ a positive integer. If $i_2(G)$ does not exists, then $i_{r2}(G + K_n) = n$.
Proof: Let S be a minimum restrained independent 2-dominating set of $G + K_n$. Since G has no restrained independent 2-dominating set, $S = V(K_n)$. Thus, S is a minimum restrained independent 2-dominating set of K_n. Hence, $i_{r2}(G + K_n) = |S| = n$. □

Lemma 2.3 Let G be a graph with isolates but $G \not\cong K_m$ for $m \geq 2$ and $n \geq 2$ a positive integer. If $i_2(G)$ exists, then $i_{r2}(G + K_n) = i_2(G)$.

Proof: Let S be a minimum restrained independent 2-dominating set of $G + K_n$. Suppose x is an isolate of G. Then x is a leaf of $G + K_n$ and hence, $x \in S$ because every leaf is contained in a restrained dominating set. Since S is an independent set, $S \subseteq V(G)$. Consequently, S is a minimum restrained independent 2-dominating set of G. Therefore, $i_{r2}(G + K_n) = i_2(G)$. □

Theorem 2.4 Let G and H be graphs such that $G \not\cong K_m$ and $H \not\cong K_n$. Then $S \subseteq V(G + H)$ is a restrained independent 2-dominating set of $G + H$ if and only if S is an independent 2-dominating set of G or S is an independent 2-dominating set of H.

Proof: Suppose $S \subseteq V(G + H)$ is a restrained independent 2-dominating set of $G + H$. Then either S is an independent set of G or S is an independent set of H. Let $S \subseteq V(G)$. Suppose S is not a 2-dominating set of G. Then there exists $v \in V(G) \setminus S$ such that $|S \cap N_G(v)| < 2$, which implies that $|S \cap N_{G+H}(v)| < 2$. This contradicts the assumption that S is a 2-dominating set of $G + H$. Hence, S is a 2-dominating set of G. Consequently, S is an independent 2-dominating set of G. Similarly, if $S \subseteq V(H)$, then S is an independent 2-dominating set of G.

Conversely, suppose S is an independent 2-dominating set of G. Clearly, S is an independent 2-dominating set of $G + H$. Next, consider the following cases:

Case 1. $G \cong K_m$.

Then $H \not\cong K_n$ and has no isolates (if H has an isolate, then $S \subseteq V(H)$ contradicting the hypothesis). This implies that $S = V(G) = V(K_n)$. Let $u \in V(G + H) \setminus S = V(H)$. Since H has no isolates, u belongs to some components of H. Thus, there exists $v \in V(H) = V(G + H) \setminus S$ such that $uv \in E(G + H)$.

Case 2. $G \not\cong K_m$.

Then G has a nontrivial component. Since S is independent, there exists $z \in V(G) \setminus S$. By definition of $G + H$, $zw \in E(G + H)$ for all $w \in V(H) \subseteq V(G + H) \setminus S$.

Therefore, S is a restrained independent 2-dominating set of $G + H$. Similarly, if S is an independent 2-dominating set of H, then S is a restrained independent 2-dominating set of $G + H$. □

The next result is a direct consequence of Theorem 2.4.
Corollary 2.5 Let G and H be graphs. Then $i_{r2}(G+H) = \min\{i_2(G), i_2(H)\}$.

Proof: Suppose $i_2(G) \leq i_2(H)$. Let S be a minimum independent 2-dominating set of G. Then $|S| = i_2(G)$. By Theorem 2.4, S is a restrained independent 2-dominating set of $G + H$. Thus,

$$i_{r2}(G + H) \leq |S| = i_2(G).$$

Next, suppose S' is a minimum restrained independent 2-dominating set of $G + H$. Then $i_{r2}(G + H) = |S'|$. By Theorem 2.4, S' is an independent 2-dominating set of G. Hence,

$$i_{r2}(G + H) = |S'| \geq i_2(G).$$

Therefore, $i_{r2}(G + H) = i_2(G)$. Similarly, if we assume that $i_2(H) \leq i_2(G)$, then $i_{r2}(G + H) = i_2(H)$. Consequently, $i_{r2}(G + H) = \min\{i_2(G), i_2(H)\}$. □

3 Corona of Graphs

Let G and H be graphs of order m and n, respectively. The corona of two graphs G and H is the graph $G \odot H$ obtained by taking one copy of G and m copies of H, and then joining the ith vertex of G to every vertex of the ith copy of H.

Theorem 3.1 Let G and H be graphs each of order at least 2, where G has no isolates if $H \cong K_n$. Then $C \subseteq V(G \odot H)$ is a restrained independent 2-dominating set of $G \odot H$ if and only if $C = \bigcup_{v \in V(G)} S^v$, where S^v is an independent 2-dominating set of H^v for all $v \in V(G)$.

Proof: Suppose $C \subseteq V(G \odot H)$ is a restrained independent 2-dominating set of $G \odot H$. Clearly, $C \cap V(H^v)$ is an independent 2-dominating set of H^v for all $v \in V(G)$. For each $v \in V(G)$, let $S^v = C \cap V(H^v)$. Then, $C = \bigcup_{v \in V(G)} S^v$, where S^v is an independent 2-dominating set of H^v for all $v \in V(G)$.

Conversely, suppose $C = \bigcup_{v \in V(G)} S^v$, where S^v is an independent 2-dominating set of H^v for all $v \in V(G)$. Then, $C = \bigcup_{v \in V(G)} S^v$ is an independent 2-dominating set of $G \odot H$. Consider the following cases:

Case 1. $H \cong K_n$.

Then $S^v = V(H^v)$ for all $v \in V(G)$. Clearly, $v \in V(G \odot H) \setminus C$. Since G
has no isolates, there exists \(w \in V(G) \) such that \(vw \in E(G) \subseteq E(G \circ H) \).

Case 2. \(H \not\cong \overline{K_n} \).

Then \(H^v \) has a nontrivial component for all \(v \in V(G) \). Since \(S^v \) is independent, there exists \(z \in V(H) \setminus S^v \) for all \(v \in V(G) \). This implies that \(z \in V(G \circ H) \setminus C \). Thus \(zv \in E(G \circ H) \) for all \(v \in V(G) \subseteq V(G \circ H) \setminus C \).

Therefore, \(C \) is a restrained independent 2-dominating set of \(G \circ H \). \(\square \)

The next corollary is a direct consequence of Theorem 3.1.

Corollary 3.2 Let \(G \) and \(H \) be graphs each of order at least 2, where \(G \) has no isolates if \(H \cong \overline{K_n} \). Then \(i_r^2(G \circ H) = |V(G)| \cdot i_2(H) \).

Proof: Let \(S \) be a minimum independent 2-dominating set of \(H \). For each \(v \in V(G) \), let \(S^v \subseteq V(H^v) \) be an independent 2-dominating set of \(H^v \) such that \(|S^v| = |S| \). Then \(i_2(H^v) = |S| = i_2(H) \). By Theorem 3.1, \(C = \bigcup_{v \in V(G)} S^v \) is a restrained independent 2-dominating set of \(G \circ H \). Thus,

\[
i_r^2(G \circ H) \leq |C| = \sum_{v \in V(G)} |S^v| = |V(G)| \cdot i_2(H).
\]

Next, suppose \(C' \) is a minimum restrained independent 2-dominating set of \(G \circ H \). Then \(i_r^2(G \circ H) = |C'| \). By Theorem 3.1, \(C' = \bigcup_{v \in V(G)} S^v \), where \(S^v \) is an independent 2-dominating set of \(H^v \) for all \(v \in V(G) \). Hence,

\[
i_r^2(G \circ H) = |C'| = \sum_{v \in V(G)} |S^v| \geq |V(G)| \cdot i_2(H).
\]

Therefore, \(i_r^2(G \circ H) = |V(G)| \cdot i_2(H) \). \(\square \)

The following results follows from Corollary 3.2.

Corollary 3.3 Let \(G \) be a connected graph of order \(m \geq 2 \) and \(n \geq 2 \) a positive integer. Then \(i_r^2(G \circ \overline{K_n}) = mn \).

Corollary 3.4 Let \(G \) be a graph with no isolates of order \(m \geq 2 \) and \(n \geq 2 \) a positive integer. Then \(i_r^2(G \circ \overline{K_n}) = mn \).

Corollary 3.5 Let \(m \) be a positive integer and \(H \) a graph such that \(H \not\cong \overline{K_n} \). Then \(i_r^2(K_m \circ H) = m \cdot i_2(H) \).
References

Received: December 5, 2017; Published: December 29, 2017