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Abstract

In this paper we deal with a discrete-time multi-period mean-variance
portfolio tracking error problem. By tracking error we mean the differ-
ence between the value of a managed portfolio and a benchmark port-
folio, obtained from a pre-specified investment strategy. The goal is
to analytically derive an optimal control policy for this mean-variance
tracking error problem in a multi-period set up, generalizing the uni-
period case considered in Roll [7]. In particular it is shown that, as
in uni-period case, the muti-period minimum tracking error variance
frontier is a constant translation of the multi-period minimum variance
frontier.
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1 Introduction

A classical financial problem, known as mean-variance optimization, is the one
in which it is desired to reduce risks by diversifying assets allocation. The
seminal work of Markowitz [6] paved the foundation for what is nowadays
known as the modern portfolio selection uni-period problem. Since then the
research on the mean-variance approach to portfolio selection has increased
in order to provide financial models with more realistic assumptions (see for
example Ling and Tang [5], Alexander and Baptista [1], Costa and Paiva [2]
and Roll [7]).

The multi-period mean-variance problem was tackled in Ni and Ng [4],
where the authors provided an analytical optimal portfolio policy and an ana-
lytical expression of the mean-variance efficient frontier. Recently there has
been a continuing effort in extending portfolio selection from the uni-period
to the multi-period case under different formulations (see for example Yin and
Zhou [8], Leippold, Trojani and Vanini [3], Xiao and Liu [9], Zhang and Gao
[10]). In particular, Xiao and Liu [9] study a multi-period mean-variance port-
folio selection based on a benchmark process in a discrete-time framework. The
authors derive the optimal portfolio and the mean-variance efficient frontier in
closed form.

Differently from Xiao and Liu [9], in this paper we present an analytical so-
lution for three kinds of mean-variance tracking error analysis when all assets
are risky and when one of the assets is riskless. These optimal solutions reduce
to the analytical solution of the uni-period mean-variance problem. Further-
more, we show that the minimum tracking error variance frontier is a constant
translation of the general minimum variance frontier. These results show that
the multi-period mean-variance portfolio tracking error problem considered in
this paper can be viewed as a generalization of the analytical work of Roll [7]
which was derived within the uni-period mean-variance formulation.

2 Problem formulation

Throughout the paper we will denote by Rn the n-dimensional Euclidean real
space and by Rn×m the Euclidean space of all n × m real matrices. The
vector formed by 1′s in all its components will be denoted by e. The super-
script ”′” will denote the transpose of a vector or matrix. We will consider
a financial market with n + 1 risky assets on a complete filtered probabili-
ty space (Ω,F , {Ft} ,P). The assets’ price will be described by the random
vector S (t) = (S0 (t) , . . . ,Sn (t))′ taking values in Rn+1 with t = 0, . . . , T .
The filtration Ft is such that the random vectors {S (k) ; k = 0, . . . , t} are
Ft-measurable. Set Ri(t) = Si(t+ 1)/Si(t), R(t) = (R0(t) R(t))′ and R(t) =
(R1(t) . . .Rn(t))′. We have that R(t) can be written as R(t) = η̄(t) + Z(t),
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where Z(t) are null mean vectors and η̄(t) ∈ Rn+1 represent the mean value
of R(t). We write η̄(t) = (η0(t) η(t))′, η(t) = (η1(t) . . . ηn(t))′ and make
the following assumptions: {Z(t); t = 0, . . . , T − 1} are independent random
vectors and E(R(t)R(t)′) > 0 for each t = 0, . . . , T − 1.

The set of admissible investment strategies U = {u = (u (0) , . . . , u (T − 1))}
is such that for each u (t) = (u1 (t) , . . . , un (t))′, is a Ft-measurable random
vector taking values in Rn. We have that u (t) represents the amount of the
wealth allocated among the n assets. We define u0(t) as the amount of the
wealth invested in the reference asset 0. Associated to each admissible invest-
ment strategy u we have the portfolio’s value process {V u (t) ; t = 0, . . . , T−1},
which represents the investor’s wealth at time t. For notational simplicity, we
will suppress the superscript u whenever no confusion may arise. We must
have at each time t that

V (t) = u0(t) + e′u(t). (1)

Assuming that the initial wealth V (0) = V0 > 0 and that the portfolio is
self-financed, we have from the wealth process in (1) that

V (t+ 1) = R0(t)u0(t) +R(t)′u(t) = R0(t)V (t) + P(t)′u(t), (2)

where
P(t) = R(t)−R0(t)e. (3)

Note that the amount of wealth invested in the asset 0 is determined by V (t)−
e′u(t).

We denote by uB (t) =
(
uB1 (t) , . . . , uBn (t)

)′
, the amount of the wealth

allocated among the n assets by a benchmark portfolio, and its value by VB(t).
We assume that the benchmark portfolio is determined by the investment
strategy given by

uB(t) = F (t)VB(t) +G(t) (4)

for pre-specified n dimensional vectors F (t) and G(t), t = 0, . . . , T − 1. Notice
that by making G(t) = 0 in (4) we get the special case in which the proportion

of the portfolio invested on each asset i is given by the vector F (t) = uB(t)
VB(t)

,

that is, the ith element Fi(t) of F (t) represents the weight on the asset i,
i = 1, . . . , n. Notice also that the investment strategy as in (4) includes the
multi-period optimal mean-variance portfolio policy as presented in equation
(40) of Li and Ng [4]. Similarly as in (1), (2) and (3) we get that

VB(t+ 1) = R0(t)VB(t) + P(t)′uB(t), with VB(0) = V0. (5)

Defining the portfolio tracking error X(t) = V (t)− VB(t) we get from (2) and



334 W. L. Paulo, Y. A. Zabala and O. L. V. Costa

(5) that

X(t+ 1) = R0(t)X(t) + P(t)′U(t), (6)

X(0) = 0, (7)

U(t) = u(t)− uB(t). (8)

Note that X(t) represents the difference (or exchange) between the managed
portfolio value V (t) and the benchmark portfolio value VB(t), so that U(t)
represents the portfolio deviation (or portfolio alteration) and u(t) represents
the managed portfolio (here called tracking portfolio). The mean-variance
tracking problems to be investigated are defined as follows:

Problem PE(σ):

maximize E[X(T )]

subject to

V ar[X(T )] ≤ σ2,

X(t+ 1) = R0(t)X(t) + P(t)′U(t),

t = 0, . . . , T − 1.

Problem PV (χ):

minimize V ar[X(T )]

subject to

E[X(T )] ≥ χ,

X(t+ 1) = R0(t)X(t) + P(t)′U(t),

t = 0, . . . , T − 1.

An alternative problem would be the following, for ρ > 0:

Problem PMV (ρ):

maximize E[X(T )]− ρV ar[X(T )]

subject to

X(t+ 1) = R0(t)X(t) + P(t)′U(t),

t = 0, . . . , T − 1,

where ρ represents an aversion risk coefficient, so that the bigger ρ is, the more
aversion to the risk the investor will be.
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3 Solution of the Problems

Define φ(t) = E[P(t)P(t)′], ϕ2
0(t) = E[R0(t)

2] and ϕ(t) = E[R0(t)P(t)]. From
(3) we have P(t) = R(t)−R0(t)e = (−e I)R(t) and since E(R(t)R(t)′) > 0
it follows that(

ϕ2
0(t) ϕ(t)′

ϕ(t) φ(t)

)
=

(
1 0
−e I

)
E[R(t)R(t)′]

(
1 −e′
0 I

)
> 0 (9)

and therefore, φ(t) = E[P(t)P(t)′] > 0. Applying the Schur’s complement in
(9) we obtain that ϕ2

0(t)− ϕ(t)′φ(t)−1ϕ(t) > 0. Notice also that(
1 (η(t)− η0(t)e)′

(η(t)− η0(t)e)′ φ(t)

)
= E

[( 1
P(t)

) (
1 P(t)′

) ]
≥ 0 (10)

and applying the Schur’s complement in (10) we obtain that (η(t)−η0(t)e)′φ(t)−1

(η(t)−η0(t)e) ≤ 1. We set A2(t) = ϕ2
0(t)−ϕ(t)′φ(t)−1ϕ(t) > 0, A1(t) = η0(t)−

(η(t)− η0(t)e)′φ(t)−1ϕ(t) and B(t) = (η(t)− η0(t)e)′φ(t)−1(η(t)− η0(t)e) ≤ 1.
Furthermore, we introduce the following backward recursive variables: Γ2(t) =
A2(t)Γ2(t + 1) > 0, with Γ2(T ) = 1, Γ1(t) = A1(t)Γ1(t + 1), with Γ1(T ) = 1,

and Γ0(t) = Γ0(t + 1) + Γ1(t+1)2

Γ2(t+1)
B(t), with Γ0(T ) = 0. Finally, we also set

C = 1
2

∑T−1
t=0

(
Γ1(t+1)2

Γ2(t+1)

)
B(t) and a = C

2
− C2.

3.1 The Case with Only Risky Assets

We present in this subsection the solution of the problems PMV (ρ), PV (χ)
and PE(σ) when all assets are risky, based on the results presented in Ni and
Ng [4]. In fact, the equation for the dynamic evolution of the portfolio in Ni
and Ng [4] is the same as in (6), the only difference being the initial condition,
which in our case is given by (7), and the control u(t), which is obtained from
(8). Notice that the value of the benchmark portfolio VB(t) would be available
since it follows a pre-specified strategy given by (4). For problem PE(σ) the
optimal solution is given by (see Ni and Ng [4], equations (24), (25) and (26),
with initial portfolio value x0 = 0)

u(t) = −K(t)(V (t)− VB(t)) +
σ√
a
ϑ(t) + uB(t) (11)

and for problem PV (χ) the optimal solution is given by

u(t) = −K(t)(V (t)− VB(t)) +
χ

C
ϑ(t) + uB(t). (12)
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For problem PMV (ρ) we obtain that the optimal control is given by (see Ni
and Ng [4], equations (22) and (23), with initial portfolio condition x0 = 0)

u(t) = −K(t)(V (t)− VB(t)) +

(
C

2ρa

)
ϑ(t) + uB(t), (13)

where
K(t) = φ(t)−1ϕ(t)

ϑ(t) =
1

2

(
Γ1(t+ 1)

Γ2(t+ 1)

)
φ(t)−1(η(t)− η0(t)e).

(14)

Note that (11), (12) and (13) represent the optimal tracking portfolio strategy
related to the problems PE(σ), PV (χ) and PMV (ρ), respectively. In other
words, u(t) represents the amount of the wealth to be allocated among the n
assets, so that u0(t) = V (t) −

∑n
i=1 ui(t) is the amount to be invested in the

reference asset.

Remark 1 Notice that the case σ = 0 in (11) (or, equivalently, ρ → ∞ in
(13) which means in Problem PE(σ) an infinity risk aversion) and the case
χ = 0 in (12) imply, as expected, that V (t) = VB(t) and u(t) = uB(t). Indeed
in this case we have from (11) with σ = 0 or (13) with ρ → ∞ or (12) with
χ = 0 that

u(t) = −K(t)(V (t)− VB(t)) + uB(t). (15)

Let us show by induction that u(t) = uB(t) and V (t) = VB(t) for all t. For
t = 0 we have by definition that VB(0) = V (0) = V0 and thus from (15) it
follows that u(0) = uB(0). Suppose now that V (t) = VB(t) and u(t) = uB(t).
Then it means that X(t) = 0, U(t) = 0 and from (6) it follows that X(t+1) =
V (t+ 1)− VB(t+ 1) = 0. From (15) it is easy to see that u(t+ 1) = uB(t+ 1)
completing the induction argument.

Remark 2 We verify that, by setting T = 1 and for fixed χ, problem PV (χ)
reduces to the uni-period mean-variance problem studied in Roll [7]. To do
this, we first rewrite the uni-period model considering the notation used above
(we omit the dependence on t). Set ri = Si(1)/Si(0) − 1, r̃ = (r0 r′)′, with
r = (r1 . . . rn)′ and ω̃ = (ω0 ω′)′, with ω = (ω1 . . . ωn)′, where ωi represents
the proportion of the wealth invested on asset i. Similarly set ω̃B as the n+ 1
vector representing the proportion of the benchmark portfolio invested on asset
i = 0, 1, . . . , n, and ωB the n dimensional vector obtained from ω̃B excluding
the first component. Considering that (ω̃ − ω̃B)′e = 0 and ri = Ri − 1, we
have P = (ω̃ − ω̃B)r̃ = (ω − ωB)′(R − R0e) = (ω − ωB)′P. Recalling that
φ = E(PP ′) and E(Ri) = ηi, the expected value and the variance of P are
given by E(P ) = (ω − ωB)′(η − η0e) = µ and σ2

P = (ω − ωB)′φ(ω − ωB)− µ2,
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respectively. Therefore, the uni-period model can be formulated as follows:

minimize (ω − ωB)′φ(ω − ωB)

subject to (ω − ωB)′(η − η0) = µ.

Considering the method of Lagrange multipliers we have{
2φ(ω − ωB) + λ(η − η0e) = 0,

(ω − ωB)′(η − η0e) = µ,

so that the optimal solution is given by

ω∗ =
µφ−1(η − η0e)

(η − η0e)′φ−1(η − η0e)
+ ωB. (16)

On the other hand, considering T = 1, we have C = 1
2
(η − η0e)′φ−1(η − η0e)

and ϑ = 1
2
φ−1(η − η0e), so that the optimal solution (12), with V = VB = V0,

is given by

u =
χφ−1(η − η0e)

(η − η0e)′φ−1(η − η0e)
+ ωBV0. (17)

Taking ω = u/V0 and considering that µ = E(V − VB)/V0 = χ/V0, we have
that (17) is equal to (16), showing that as expected, the optimal solution (12)
obtained for problem PV (χ), for the case T = 1, coincides with the one for
the uni-period problem analyzed in Roll [7].

We recall that X(t) = V (t)−VB(t) represents the portfolio deviation value
(or excess value), whereas V (t) represents the managed portfolio value (here
called tracking portfolio value) and VB(t) represents the benchmark portfo-
lio value. The expected excess value and the tracking error variance, under
the optimal portfolio policy u(t), are respectively given by (see Li and Ng [4],
equations (55) and (56), with initial portfolio value x0 = 0) E[X(T )] = C2/2aρ
and V ar[X(T )] = C2/4aρ2, with ρ = C/(2σ

√
a) when PE(σ) is solved and

ρ = C2/(2aχ) when PV (χ) is solved. The excess mean-variance tracking error
frontier for the problems PE(σ), PV (χ) and PMV (ρ) can be written as fol-
lows (see again Li and Ng [4], equation (27), with initial portfolio value x0 = 0)
V ar[X(T )] = aE[X(T )]2/C2. Then, V ar[V (T )] represents the variance of the
terminal tracking portfolio value V (T ) on the tracking error frontier (repre-
sented on the plane (V ar[V (T )], E[V (T )])) and V ar[VB(T )] represents the
variance of the terminal benchmark portfolio value VB(T ). Note from (4) and
(5) that VB(t+1) = (R0(t)+P(t)′F (t))VB(t)+P(t)′G(t) and thus, considering
the statistical independence between (R0(t),P ′(t)) and VB(t), that

E
[
VB(t+ 1)

]
= Ψ1(t)E

[
VB(t+ 1)

]
+ β1(t), (18)
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with Ψ1(t) = η0(t) + (η′(t)− η0(t)e′)F (t) and β1(t) = (η(t)− η0(t)e)′G(t) and

E
[
VB(t+ 1)2

]
= Ψ2(t)E

[
VB(t)2

]
+ α(t)E

[
VB(t)

]
+ β2(t), (19)

with Ψ2(t) = ϕ2
0(t)+F ′(t)φ(t)F (t)+2F ′(t)ϕ(t), α(t) = 2(ϑ(t)+φ(t)F (t))′G(t)

and β2(t) = G(t)′φ(t)G(t), so that the variance of the terminal benchmark
portfolio value can be calculated from V ar[VB(T )] = E[VB(T )2)]− E[VB(T )]2

by iterating equations (18) and (19).
Considering the multi-period mean-variance formulation studied in Li and

Ng [4], let V ar[Ṽ (T )] denote the variance of the terminal optimal portfolio
value Ṽ (T ) on the mean-variance efficient frontier. As shown in Roll [7] for
the uni-period mean-variance tracking error problem, in the following we verify
that for the multi-period problem PV (χ) the difference between V ar[V (T )]
and V ar[Ṽ (T )] is the same at every expected terminal portfolio value level.

Proposition 1 Let τ =
∏T−1

t=0 A2(t), µ =
∏T−1

t=0 A1(t) and b = µC/a. Taking
E[Ṽ (T )] = E[V (T )] = χ + E[VB(T )] and Ṽ (0) = V (0) = V0, we have for the
problem PV (χ) that

V ar[V (T )]− V ar[Ṽ (T )] = − a

C2
(
E[VB(T )]− (µ+ bC)V0

)2
+ V ar[VB(T )]− cV 2

0 , (20)

with c = (τ − µ2 − ab2).

Proof. Under the portfolio strategy (12) the dynamics of the tracking
portfolio value (2) is written by

V (t+ 1) =
(
R0(t)− P ′(t)K(t)

)
V (t) + P ′(t)

(χ
C
ϑ(t) +G(t)

)
+ P ′(t)

(
K(t) + F (t)

)
VB(t), (21)

where K(t) and ϑ(t) are defined in (14). Squaring both sides of (21) we have
that

V 2(t+ 1) =
(
R0(t)− P ′(t)K(t)

)2
V 2(t) +

(
P ′(t)

(χ
C
ϑ(t) +G(t)

))2
+
(
P ′(t)(K(t) + F (t))

)2
V 2
B(t)

+ 2
(
R0(t)− P ′(t)K(t)

)
P ′(t)

(χ
C
ϑ(t) +G(t)

)
V (t)

+ 2
(χ
C
ϑ(t) +G(t)

)′P(t)P ′(t)
(
K(t) + F (t)

)
VB(t)

+ 2
(
R0(t)− P ′(t)K(t)

)
P ′(t)

(
K(t) + F (t)

)
V (t)VB(t). (22)

Taking the expectation on both sides of (22) and considering the statisti-
cal independence between (R0(t),P ′(t)) and (V (t), VB(t)), and noticing that
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E[(R0(t) − P ′(t)K(t)
)
P ′(t)] = 0, we have the following recursive expression

for the expected value of the squared tracking portfolio value:

E[V 2(t+ 1)] = A2(t)E[V 2(t)] +
(χ
C
ϑ(t) +G(t)

)′
φ(t)

(χ
C
ϑ(t) +G(t)

)
+
(
K(t) + F (t)

)′
φ(t)

(
K(t) + F (t)

)
E[V 2

B(t)]

+ 2
(χ
C
ϑ(t) +G(t)

)′
φ(t)

(
K(t) + F (t)

)
E[VB(t)]. (23)

We have the following identities:

(K(t) + F (t))′φ(t)(K(t) + F (t)) = −A2(t) + Ψ2(t), (24)

2ϑ′(t)φ(t)
(
K(t) + F (t)

)
=

Γ1(t+ 1)

Γ2(t+ 1)
(−A1(t) + Ψ1(t)), (25)

G′(t)φ(t)
(
K(t) + F (t)

)
= (ϕ′(t) + F ′(t)φ(t))G(t), (26)

2G′(t)φ(t)ϑ(t) =
Γ1(t+ 1)

Γ2(t+ 1)
(η(t)− η0(t)e)′G(t), (27)

ϑ′(t)φ(t)ϑ(t) =
1

4

(Γ1(t+ 1)

Γ2(t+ 1)

)2
B(t). (28)

Set Z(t) = E(V 2(t)) − E(V 2
B(t)). By combining (24)-(28) and (18)-(19) into

(23) we get that

Z(t+ 1) = A2(t)Z(t) +
(χ
C

)(Γ1(t+ 1)

Γ2(t+ 1)

)(
− A1(t)E(VB(t)) + E(VB(t+ 1))

)
+
( χ

2C

)2(Γ1(t+ 1)

Γ2(t+ 1)

)2
B(t). (29)

Solving the recursive equation (29) and recalling that V (0) = VB(0) = V0 (and
thus Z(0) = 0) and Γ2(t + 1) =

∏T−1
k=t+1A2(k), Γ1(t + 1) =

∏T−1
k=t+1A1(k) we

get that

Z(T ) =
T−1∑
t=0

Γ2(t+ 1)
{(χ
C

)(Γ1(t+ 1)

Γ2(t+ 1)

)[
− A1(t)E(VB(t)) + E(VB(t+ 1))

]
+
( χ

2C

)2(Γ1(t+ 1)

Γ2(t+ 1)

)2
B(t)

}
=
(χ
C

)(
E(VB(T ))− µV0

)
+
χ2

2C
. (30)

Thus from (30) the expected value of the squared terminal tracking portfolio

value is given by E[V 2(T )] = χ2

2C + χ
C

(
E[VB(T )] − µV0

)
+ E[V 2

B(T )]. Since
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E[V (T )] = χ+ E[VB(T )], we have that

V ar[V (T )] =
aχ2

C2
+
χ

C
(
(1− 2C)E[VB(T )]− µV0

)
+ V ar[VB(T )]. (31)

Recall that Ṽ (T ) denote the terminal optimal portfolio value and V ar[Ṽ (T )]
its respective variance. We have that (see Li and Ng [4], equations (56) and
(26), with ν = C and x0 = Ṽ (0))

V ar[Ṽ (T )] =
a

C2
(
ε− (µ+ bC)Ṽ (0)

)2
+ (τ − µ2 − ab2)Ṽ 2(0), (32)

where ε is the pre-selected level of the expected terminal optimal portfolio value
(e.g. ε = E[Ṽ (T )]). Taking ε = E[V (T )] = χ + E[VB(T )] and Ṽ (0) = V0, we
have that (31) and (32) yields (20), completing the proof.

Remark 3 If the benchmark portfolio obtained from uB(t) is efficient, e.g.
E[VB(T )] = E[Ṽ (T )] and V ar[VB(T )] = V ar[Ṽ (T )], then from equation (32),
with ε = E(VB(T )) and Ṽ (T ) = V0, the variance of the terminal benchmark

portfolio value is given by V ar[VB(T )] = a
C2
(
E[VB(T )] − (µ + bC)V0

)2
+ (τ −

µ2 − ab2)V 2
0 . Therefore, from (20) we have V ar[V (T )] − V ar[VB(T )] = 0, as

described in Roll [7] for the uni-period mean-variance tracking error problem.

3.2 The Special Case with One Riskless Asset

Let us investigate now the special case in which one of the assets is riskless
(that is, it has no volatility). We assume the asset i = 0 as the riskless one.
In this case R0(t) = η0(t) and

A1(t) = η0(t)(1− B(t)), A2(t) = η0(t)
2(1− B(t)),

Γ1(t+ 1)

Γ2(t+ 1)
=

T−1∏
k=t+1

1

η0(k)
,

Γ1(0) =
T−1∏
t=0

η0(t)(1− B(t)), Γ2(0) =
T−1∏
t=0

η0(t)
2(1− B(t)),

a =
1

4

T−1∏
t=0

(1− B(t))

(
1−

T−1∏
t=0

(1− B(t))

)
, b = 2

T−1∏
t=0

η0(t), c = 0,

ϑ(t) =
1

2

(
T−1∏
k=t+1

1

η0(k)

)
φ(t)−1(η(t)− η0(t)e),

C =
1

2

(
1−

T−1∏
t=0

(1− B(t))

)
, (bv0 +

C
2ρa

) = 2
T−1∏
t=0

η0(t)v0 +
1

ρ
∏T−1

t=0 (1− B(t))
.
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For problem PE(σ) the optimal solution is given by (see Li and Ng [4],
equations (73), (74) and (75), with initial portfolio value x0 = 0)

u(t) = −η0(t)φ(t)−1(η(t)− η0(t)e)(V (t)− VB(t))

+
2σϑ(t)√

[1−
∏T−1

t=0 (1− B(t))]
∏T−1

t=0 (1− B(t))
+ uB(t) (33)

and for problem PV (χ) the optimal solution is given by

u(t) = −η0(t)φ(t)−1(η(t)− η0(t)e)(V (t)− VB(t))

+
2χϑ(t)

1−
∏T−1

t=0 (1− B(t))
+ uB(t). (34)

For problem PMV (ρ) we obtain that the optimal control is given by (see Li
and Ng [4], equations (69) and (70), with initial portfolio condition x0 = 0)

u(t) = −η0(t)φ(t)−1(η(t)− η0(t)e)(V (t)− VB(t))

+
ϑ(t)

ρ
∏T−1

t=0 (1− B(t))
+ uB(t). (35)

As in Remark 1 the cases ρ → ∞ in (35), σ = 0 in (33), and χ = 0 in (34)
imply, as expected, that V (t) = VB(t) and u(t) = uB(t).

The expected excess value and the variance of the excess terminal portfolio
tracking error under the optimal portfolio policy u(t) are respectively given by
(see Li and Ng [4], equations (71) and (72), with initial portfolio value x0 = 0)

E(X(T )) =
1−

∏T−1
t=0 (1− B(t))

2ρ
∏T−1

t=0 (1− B(t))
and V ar(X(T )) =

1−
∏T−1

t=0 (1− B(t))

4ρ2
∏T−1

t=0 (1− B(t))
,

where ρ = 1
2σ

√
1−

∏T−1
t=0 (1−B(t))∏T−1

t=0 (1−B(t)) , when PE(σ) is solved, and ρ =
1−

∏T−1
t=0 (1−B(t))

2χ
∏T−1

t=0 (1−B(t)) ,

when PV (σ) is solved. Finally, the excess mean-variance tracking error frontier
for the problems PE(σ), PV (χ) and PMV (ρ) is given by (see again Li and
Ng [4], equation (76), with initial portfolio value x0 = 0)

V ar(X(T )) =

∏T−1
t=0 (1− B(t))

1−
∏T−1

t=0 (1− B(t))
(E(X(T ))2 .

Remark 4 As in Remark (2), in the following we verify that, by setting T = 1
and for fixed χ, the solution (34) for problem PV (χ) reduces to the uni-period
mean-variance problem with one riskless asset (with expected return rate rf).
Considering r = (r1 . . . rn)′ and ω = (ω1 . . . ωn)′, with ri = Si(1)/Si(0) − 1
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and ri = Ri − 1, we have P = (ω − ωB)′r = (ω − ωB)′(R − e) with E(P ) =
(ω − ωB)′(η − e). Setting Σ = E(RR′) and rf = η0 − 1, the uni-period model
can be formulated as follows:

minimize (ω − ωB)′Σ(ω − ωB)

subject to (1− ω′e)(η0 − 1) + (ω − ωB)′(η − e) = µ.

In this case, the optimality conditions are written as{
2Σ(ω − ωB) + λ(η − η0e) = 0,

ω′(η − η0e) = 1 + µ− η0 + ω
′
B(η − e),

so that the optimal solution is given by

ω∗ =
µΣ−1(η − η0e)

(η − η0e)′Σ−1(η − η0e)
+ ωB. (36)

On the other hand, considering T = 1, we have ϑ = 1
2
φ−1(η− η0e), so that the

optimal solution (34), with V = V B = V0, is given by

u =
χφ−1(η − η0e)

(η − η0e)′φ−1(η − η0e)
+ ωBV0. (37)

Since σ0i = 0, with i = 0, . . . , n, we have φ = E(PP ′) = E(RR′) = Σ. Taking
ω = u/V0 and considering that µ = E(V − VB)/V0 = χ/V0, we have that (37)
is equal to (36), showing that, as expected, the solution for the multi-period
problem PV (χ) with one riskless asset when we set T = 1 is the same as the
one for the uni-period problem.

4 Conclusion

In this paper we extended the work of Roll [7] by studying a discrete-time multi-
period mean-variance tracking error portfolio selection problem. An optimal
investment strategy for this mean-variance problem was analytically derived in
a closed form. As a result, an explicit expression for the efficient frontier was
identified. Moreover, it was shown that the muti-period minimum tracking
error variance frontier is a constant translation of the multi-period minimum
variance efficient frontier. Our results coincide with those in Roll [7] for the
uni-period mean-variance formulation.
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