Hermite-Hadamard Type Inequalities for Fractional Integrals Operators

Loredana Ciurdariu

Department of Mathematics
"Politehnica" University of Timisoara
P-ta. Victoriei, No.2, 300006-Timisoara, Romania

Abstract

Several Hermite-Hadamard type inequalities will be given in this paper for n-time differentiable functions whose n-time derivative in absolute value satisfy different kind of convexities via Riemann-Liouville fractional integral operators.

Mathematics Subject Classification: 26A33, 26D10, 26D15

Keywords: Hermite-Hadamard inequality, convex functions, Holder inequality, Riemann-Liouville fractional integral, fractional integral operator, power mean inequality

1. Introduction

The inequality of Hermite-Hadamard type has been considered very useful in mathematical analysis being very intensely studied, extended and generalized in many directions by many authors, see [24, 7, 6, 10, 1, 14, 18, 25, 12] and the references therein.

Many papers study the Riemann-Liouville fractionals integrals and give new and interesant generalizations of Hermite-Hadamard type inequalities using these kind of integrals, see for instance [9, 8, 10, 11, 12, 19, 16, 18, 14, 24, 25, 26, 27, 28, 21, 30].

We will begin now by recalling the classical definition for the convex functions and then the definitions for other kind of convexities.
Definition 1. A function \(f : I \subset \mathbb{R} \to \mathbb{R} \) is said to be convex on an interval \(I \) if the inequality
\[
\tag{1} f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)
\]
holds for all \(x, y \in I \) and \(t \in [0,1] \). The function \(f \) is said to be concave on \(I \) if the inequality (1) takes place in reversed direction.

It is necessary to recall below also the definition of fractionals integrals, see [9, 11, 10, 19, 20, 26] and then the definition of fractional integral operators. For other type of convexity see also [22, 17].

Definition 2. A function \(f : [a,b] \to \mathbb{R} \) is said to be quasi-convex on \([a,b]\) if
\[
f(tx + (1-t)y) \leq \sup \{ f(x), f(y) \}
\]
holds for all \(x, y \in [a,b] \) and \(t \in [0,1] \).

Definition 3. A function \(f : I \to \mathbb{R} \) is said to be P-convex on \([a,b]\) if it is nonnegative and for all \(x, y \in I \) and \(\lambda \in [9,1] \)
\[
f(tx + (1-t)y) \leq f(x) + f(y).
\]

Definition 4. A function \(f : I \subset \mathbb{R}^+ \to \mathbb{R}^+ \) is said to be s-convex in the first sense on an interval \(I \) if the inequality
\[
f(tx + (1-t)y) \leq t^s f(x) + (1-t)^s f(y)
\]
holds for all \(x, y \in I \), \(t \in [0,1] \) and for some fixed \(s \in (0,1] \).

Definition 5. A function \(f : I \subset \mathbb{R}^+ \to \mathbb{R}^+ \) is said to be s-convex in the second sense on an interval \(I \) if the inequality
\[
f(tx + (1-t)y) \leq t^s f(x) + (1-t)^s f(y)
\]
holds for all \(x, y \in I \), \(t \in [0,1] \) and for some fixed \(s \in (0,1] \).

Definition 6. A function \(f : I \subset \mathbb{R}^+ \to \mathbb{R}^+ \) is said to be s-Godunova-Levin functions of second kind on an interval \(I \) if the inequality
\[
f(tx + (1-t)y) \leq \frac{1}{t^s} f(x) + \frac{1}{(1-t)^s} f(y)
\]
holds for all \(x, y \in I \), \(t \in (0,1) \) and for some fixed \(s \in [0,1] \).

It is easy to see that for \(s = 0 \) s-Godunova-Levin functions of second kind are functions P-convex.

The classical Hermite-Hadamard’s inequality for convex functions is
(2) \[f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2}. \]

Moreover, if the function \(f \) is concave then the inequality (2) hold in reversed direction.

Definition 7. Let \(f \in L[a, b] \). The Riemann-Liouville integrals \(J_{a+}^\alpha f \) and \(J_{b-}^\alpha f \) of order \(\alpha > 0 \) with \(\alpha \geq 0 \) are defined by

\[
J_{a+}^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x - t)^{\alpha-1}f(t)dt, \ x > a
\]

and

\[
J_{b-}^\alpha f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t - x)^{\alpha-1}f(t)dt, \ x < b,
\]

respectively, where \(\Gamma(\alpha) \) is the Gamma function defined by \(\Gamma(\alpha) = \int_0^\infty e^{-t}t^{\alpha-1}dt \) and \(J^0_{a+} f(x) = J^0_{b-} f(x) = f(x) \).

It is well-known that the beta function is defined when \(a, b > 0 \) by

\[
R(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a + b)} = \int_0^1 t^{a-1}(1 - t)^{b-1}dt.
\]

The following class of functions defined formally by

\[
\mathcal{F}_{\rho, \lambda}^\sigma(x) = \sum_{k=0}^\infty \frac{\sigma(k)}{\Gamma(\rho k + \lambda)} x^k \quad (\rho, \lambda > 0; \ |x| < R),
\]

where the coefficients \(\sigma(k), \ (k \in \mathbb{N} = \mathbb{N} \cup \{0\}) \) is a bounded sequence of positive real numbers and \(\mathbb{R} \) is the set of real numbers, as in [21], was introduced in [29] and was used for giving in [3] the following left-sided and right-sided fractional integral operators from below:

\[
(J_{\rho, \lambda,a+;w}^\sigma \varphi)(x) = \int_a^x (x - t)^{\lambda-1}\mathcal{F}_{\rho, \lambda}^\sigma[w(x - t)^\rho]\varphi(t)dt, \quad (x > a > 0),
\]

and

\[
(J_{\rho, \lambda,b-;w}^\sigma \varphi)(x) = \int_x^b (t - x)^{\lambda-1}\mathcal{F}_{\rho, \lambda}^\sigma[w(t - x)^\rho]\varphi(t)dt, \quad (0 < x < b),
\]

where \(\rho, \lambda > 0, \ w \in \mathbb{R} \) and \(\varphi(t) \) is such that the integral on the right side exists. There are new integral inequalities for this operator, see [21, 3, 30] and references therein.

It is important to mention that for example the classical Riemann-Liouville fractional integrals \(J_{a+}^\alpha \) and \(J_{b-}^\alpha \) of order \(\alpha \) were obtained by setting \(\lambda = \alpha, \ sigma(0) = 1 \) and \(w = 0 \) in previous integrals.
In this paper, two new identities are given and then some applications, like Hermite-Hadamard type inequalities for functions whose the n-time derivative in absolute value of certain powers satisfies different type of convexities via Riemann-Liouville fractional integral operators are established.

2. Main results

The following result is a generalization of Lemma 1 from [5] for fractional integral operators for functions n-time differentiable.

Lemma 1. Let \(f : [a, b] \to \mathbb{R} \) be an n-time differentiable mapping on \((a, b)\) with \(0 < a < b\), \(\lambda > n - 1\), \(x \in (a, b)\) and \(t \in [0, 1]\). If \(f^{(n)} \in L[a, b] \) then the following equality for generalized fractional integrals holds:

\[
\int_0^1 t^\lambda F_{\rho,\lambda+1}^\sigma[(x-a)^\rho t^\rho]f^{(n)}(tx + (1-t)a)\,dt + \\
+ \int_0^1 (1-t)^\lambda F_{\rho,\lambda+1}^\sigma[(b-x)^\rho(1-t)^\rho]f^{(n)}(tb + (1-t)x)\,dt = \\
= \sum_{k=1}^n (-1)^{k-1} \frac{1}{(x-a)^k} F_{\rho,\lambda-k+2}^\sigma[(x-a)^\rho] - \frac{1}{(x-a)^k} F_{\rho,\lambda-k+2}^\sigma[(b-x)^\rho] \right) f^{(n-k)}(x) + \\
+ \frac{(-1)^n}{(x-a)\lambda+1} \left(J_{\rho,\lambda-n+1,x^-,w}^\sigma f \right)(a) + \frac{1}{(x-a)^\lambda+1} \left(J_{\rho,\lambda-n+1,x^+,w}^\sigma f \right)(b).
\]

Proof. As in [21], we compute first

\[
\int_0^1 t^\lambda F_{\rho,\lambda+1}^\sigma[(x-a)^\rho t^\rho]f''(tx + (1-t)a)\,dt
\]

and then we will prove by induction that

\[
I_1 = \int_0^1 t^\lambda F_{\rho,\lambda+1}^\sigma[(x-a)^\rho t^\rho]f^{(n)}(tx + (1-t)a)\,dt = \\
= \sum_{k=1}^n (-1)^{k-1} \frac{1}{(x-a)^k} f^{(n-k)}(x) F_{\rho,\lambda-k+2}^\sigma[(x-a)^\rho] + \frac{(-1)^n}{(x-a)^\lambda+1} \left(J_{\rho,\lambda-n+1,x^-,w}^\sigma f \right)(a).
\]

Integrating by parts and then changing variables with \(u = tx + (1-t)a \) we get

\[
\int_0^1 t^\lambda F_{\rho,\lambda+1}^\sigma[(x-a)^\rho t^\rho]f''(tx + (1-t)a)\,dt = \\
= F_{\rho,\lambda+1}^\sigma[(x-a)^\rho] \frac{f'(x)}{x-a} - \frac{f(x)}{(x-a)^2} F_{\rho,\lambda}^\sigma[(x-a)^\rho] + \\
+ \frac{1}{(x-a)^2} \int_0^1 t^{\lambda-2} F_{\rho,\lambda-1}^\sigma[(x-a)^\rho t^\rho]f(tx + (1-t)a)\,dt
\]
or

\[
\int_0^1 t^\lambda F_{\rho,\lambda+1}^\sigma[(x-a)^\rho t^\rho]f''(tx + (1-t)a)\,dt = \
\]
\[\mathcal{F}_{\rho, \lambda+1}^\sigma[(x-a)^\rho] \frac{f'(x)}{x-a} - \frac{f(x)}{(x-a)^2} \mathcal{F}_{\rho, \lambda}^\sigma[(x-a)^\rho] + \frac{1}{(x-a)^{\lambda+1}} \left(\mathcal{J}_{\rho, \lambda-1, x^-; \omega f}^\sigma (a) \right) . \]

Analogously, by using the same method we get:

\[\int_0^1 (1-t)^\lambda \mathcal{F}_{\rho, \lambda+1}^\sigma[(b-x)^\rho(1-t)^\rho] f''(tb + (1-t)x) dt = -\mathcal{F}_{\rho, \lambda+1}^\sigma[(b-x)^\rho] \frac{f'(x)}{b-x} - \frac{f(x)}{(b-x)^2} \mathcal{F}_{\rho, \lambda}^\sigma[(b-x)^\rho] + \frac{1}{(b-x)^{\lambda+1}} \left(\mathcal{J}_{\rho, \lambda-1, x^-; \omega f}^\sigma (b) \right) . \]

or by substitution \(u = tb + (1-t)x, \)

\[\int_0^1 (1-t)^\lambda \mathcal{F}_{\rho, \lambda+1}^\sigma[(b-x)^\rho(1-t)^\rho] f''(tb + (1-t)x) dt = -\mathcal{F}_{\rho, \lambda+1}^\sigma[(b-x)^\rho] \frac{f'(x)}{b-x} - \frac{f(x)}{(b-x)^2} \mathcal{F}_{\rho, \lambda}^\sigma[(b-x)^\rho] + \frac{1}{(b-x)^{\lambda+1}} \left(\mathcal{J}_{\rho, \lambda-1, x^-; \omega f}^\sigma (b) \right) . \]

Therefore by induction we have,

\[I_2 = -\sum_{k=1}^n f^{(n-k)}(x) \frac{1}{(b-x)^{k}} \mathcal{F}_{\rho, \lambda-k+2}^\sigma[(b-x)^\rho] + \frac{1}{(b-x)^{\lambda+1}} \left(\mathcal{J}_{\rho, \lambda-n+1, x^-; \omega f}^\sigma (b) \right) . \]

Now summing \(I_1 \) and \(I_2 \) we obtain the desired equality.

\[\square \]

Using this lemma we obtain the following result for \(n \)-time differentiable functions whose absolute value is convex via fractional integral operator.

Theorem 1. Let \(f : [a, b] \to \mathbb{R} \) be an \(n \)-time differentiable mapping on \((a, b) \) with \(0 < a < b, \lambda > n-1, x \in (a, b) \) and \(t \in [0, 1] \). If \(f^{(n)} \in L[a, b] \) and \(|f^{(n)}| \) is convex on \((a, b) \) then the following inequality for generalized fractional integral operators takes place:

\[\left| \sum_{k=1}^n (-1)^{k-1} f^{(n-k)}(x) \left\{ \frac{\mathcal{F}_{\rho, \lambda-k+2}^\sigma[(x-a)^\rho]}{(x-a)^k} - \frac{\mathcal{F}_{\rho, \lambda-k+2}^\sigma[(b-x)^\rho]}{(b-x)^k} \right\} \right| + \left| \frac{(-1)^n}{(x-a)^{\lambda+1}} \left(\mathcal{J}_{\rho, \lambda-n+1, x^-; \omega f}^\sigma (a) + \frac{1}{(b-x)^{\lambda+1}} \left(\mathcal{J}_{\rho, \lambda-n+1, x^-; \omega f}^\sigma (b) \right) \right) \right| \leq \mathcal{F}_{\rho, \lambda+1}^\sigma[w(x-a)^\rho] \left(\frac{|f^{(n)}(x)|}{\lambda + 2} + \frac{|f^{(n)}(a)|}{(\lambda + 1)(\lambda + 2)} \right) + \mathcal{F}_{\rho, \lambda+1}^\sigma[w(a-x)^\rho] \left(\frac{|f^{(n)}(b)|}{\lambda + 2} + \frac{|f^{(n)}(b)|}{(\lambda + 1)(\lambda + 2)} \right) . \]
Using the properties of modulus, Lemma 1 and that \(|f^{(n)}|\) is convex function we get:

\[
\sum_{k=1}^{n} (-1)^{k-1} f^{(n-k)}(x) \left\{ \frac{\mathcal{F}_\rho^\sigma \lambda-k+2[(x-a)^\rho]}{(x-a)^k} - \frac{\mathcal{F}_\rho^\sigma \lambda-k+2[(b-x)^\rho]}{(b-x)^k} \right\} + \frac{(-1)^n}{(x-a)^{\lambda+1}} (\mathcal{J}_\rho^\sigma \lambda-n+1,x:-\omega f)(a) + \frac{1}{(b-x)^{\lambda+1}} (\mathcal{J}_\rho^\sigma \lambda-n+1,x:+\omega f)(b) = \]

\[
= \int_0^1 t^\lambda \mathcal{F}_\rho^\sigma \lambda+1[(x-a)^\rho t^\rho]f^{(n)}(tx + (1-t)a)dt + \int_0^1 (1-t)^\lambda \mathcal{F}_\rho^\sigma \lambda+1[(b-x)^\rho(1-t)^\rho]f^{(n)}(tb + (1-t)x)dt \leq \sum_{k=0}^\infty \sigma(k) w^k (x-a)^{\rho k} \left(\int_0^1 t^\lambda+1 dt + \int_0^1 t^\lambda(1-t)dt \right) + \sum_{k=0}^\infty \sigma(k) w^k (b-x)^{\rho k} \left(\int_0^1 (1-t)^\lambda t dt + \int_0^1 (1-t)\lambda+1 dt \right).
\]

From here by easily calculus we get the desired inequality.

}\]

By this lemma we also obtain the following result for \(n\)-time differentiable functions whose absolute value is \(s\)-convex in the second sense via fractional integral operator.

\textbf{Theorem 2.} Let \(f : [a, b] \rightarrow \mathbb{R}\) be an \(n\)-time differentiable mapping on \((a, b)\) with \(0 < a < b, \lambda > n-1, x \in (a, b), s \in (0, 1)\) and \(t \in [0, 1]\). If \(f^{(n)} \in L[a, b]\) and \(|f^{(n)}|\) is \(s\)-convex in the second sense on \((a, b)\) then the following inequality for generalized fractional integral operators takes place:

\[
\sum_{k=1}^{n} (-1)^{k-1} f^{(n-k)}(x) \left\{ \frac{\mathcal{F}_\rho^\sigma \lambda-k+2[(x-a)^\rho]}{(x-a)^k} - \frac{\mathcal{F}_\rho^\sigma \lambda-k+2[(b-x)^\rho]}{(b-x)^k} \right\} + \frac{(-1)^n}{(x-a)^{\lambda+1}} (\mathcal{J}_\rho^\sigma \lambda-n+1,x:-\omega f)(a) + \frac{1}{(b-x)^{\lambda+1}} (\mathcal{J}_\rho^\sigma \lambda-n+1,x:+\omega f)(b) \leq \]

\[
\leq \mathcal{F}_\rho^\sigma \lambda+1[w(x-a)^\rho] \left(\frac{|f^{(n)}(x)|}{\lambda + s + 1} + |f^{(n)}(a)|B(\lambda + 1, s + 1) \right) + \mathcal{F}_\rho^\sigma \lambda+1[w(b-x)^\rho] \left(\frac{|f^{(n)}(x)|}{\lambda + s + 1} + |f^{(n)}(b)|B(\lambda + 1, s + 1) \right).
\]

\textit{Proof.} We use the same method as in Theorem 1, but this time we apply the definition of \(s\)-convex function in the second sense. \(\Box\)
Next result is a generalization of Lemma 4 from [4] for fractional integral operators for functions n-time differentiable.

Lemma 2. Let \(f : [a, b] \to \mathbb{R} \) be an n-time differentiable mapping on \((a, b)\) with \(0 < a < b, \lambda > n - 1, x \in (a, b) \) and \(t, r \in [0, 1] \). If \(f^{(n)} \in L[a, b] \) then the following equality for generalized fractional integrals holds:

\[
\begin{align*}
&\int_0^1 t^\lambda \mathcal{F}^\sigma_{\rho,\lambda+1}[(1-r)^\rho(x-a)\rho t^\rho] f^{(n)}(t(a + (1-r)x) + (1-t)a) dt + \\
&+ \int_0^1 (1-t)^\lambda \mathcal{F}^\sigma_{\rho,\lambda+1}[r^\rho(x-a)\rho(1-t)^\rho] f^{(n)}(tx + (1-t)(ra + (1-r)x)) dt + \\
&+ \int_0^1 t^\lambda \mathcal{F}^\sigma_{\rho,\lambda+1}[(1-r)^\rho(b-x)\rho t^\rho] f^{(n)}(tb + (1-t)(rx + (1-r)b)) dt + \\
&+ \int_0^1 (1-t)^\lambda \mathcal{F}^\sigma_{\rho,\lambda+1}[r^\rho(b-x)\rho(1-t)^\rho] f^{(n)}(tb + (1-t)(rx + (1-r)b)) dt = \\
&= \sum_{k=1}^n \frac{(-1)^{k-1}}{(1-r)^k} \frac{f^{(n-k)}(ra + (1-r)x)}{(b-x)^k} \mathcal{F}^\sigma_{\rho,\lambda-k+2}[(1-r)^\rho(x-a)^\rho] + \\
&+ \frac{f^{(n-k)}(rx + (1-r)b)}{(b-x)^k} \mathcal{F}^\sigma_{\rho,\lambda-k+2}[(1-r)^\rho(b-x)^\rho] - \\
&- \sum_{k=1}^n \frac{1}{r^k} \frac{f^{(n-k)}(ra + (1-r)x)}{(a-x)^k} \mathcal{F}^\sigma_{\rho,\lambda-k+2}[r^\rho(x-a)^\rho] + \\
&+ \frac{f^{(n-k)}(rx + (1-r)b)}{(b-x)^k} \mathcal{F}^\sigma_{\rho,\lambda-k+2}[r^\rho(b-x)^\rho] + \\
&+ \frac{1}{r^\lambda+1} (\mathcal{J}^\sigma_{\rho,\lambda-n+1,(ra+(1-r)x)^{-};w} f)(a) + \\
&+ \frac{1}{r^\lambda+1} (\mathcal{J}^\sigma_{\rho,\lambda-n+1,(ra+(1-r)x)^{+};w} f)(x) + \\
&+ \frac{1}{r^\lambda+1} (\mathcal{J}^\sigma_{\rho,\lambda-n+1,(rx+(1-r)b)^{-};w} f)(x) + \\
&+ \frac{1}{r^\lambda+1} (\mathcal{J}^\sigma_{\rho,\lambda-n+1,(rx+(1-r)b)^{+};w} f)(b).
\end{align*}
\]

Proof. We denote

\[
\begin{align*}
I_1 &= \int_0^1 t^\lambda \mathcal{F}^\sigma_{\rho,\lambda+1}[(1-r)^\rho(x-a)\rho t^\rho] f^{(n)}(t(a + (1-r)x) + (1-t)a) dt, \\
I_2 &= \int_0^1 (1-t)^\lambda \mathcal{F}^\sigma_{\rho,\lambda+1}[r^\rho(x-a)\rho(1-t)^\rho] f^{(n)}(tx + (1-t)(ra + (1-r)x)) dt, \\
I_3 &= \int_0^1 t^\lambda \mathcal{F}^\sigma_{\rho,\lambda+1}[(1-r)^\rho(b-x)\rho t^\rho] f^{(n)}(tb + (1-t)(rx + (1-r)b)) dt
\end{align*}
\]
integral operators takes place:

Let $\rho, \sigma, \lambda > n - 1, x \in (a, b)$ and $t, r \in [0, 1]$. If $f^{(n)} \in \mathcal{L}[a, b]$ and $|f^{(n)}|$ is convex on (a, b) then the following inequality for generalized fractional integral operators takes place:

\[
I_4 = \int_0^1 (1 - t)^\lambda \mathcal{F}_{\rho, \lambda + 1}^{\sigma} [r^\rho (b - x)^\rho (1 - t)^\rho] f^{(n)}(tb + (1 - t)(rx + (1 - r)b)) dt.
\]

As in Lemma 1 we prove by induction that

\[
I_1 = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{(1 - r)^k (x - a)^k} f^{(n-k)}(ra + (1 - r)x) \mathcal{F}_{\rho, \lambda - k + 2}^{\sigma} [(1 - r)^\rho (x - a)^\rho] +
\]

\[
+ \frac{(-1)^n}{(1 - r)^{\lambda + 1} (x - a)^{\lambda + 1}} (\mathcal{J}_{\rho, \sigma, \lambda - n + 1}^{\rho, \lambda + 1}; x^{(1 - r)x}; w f)(a)
\]

and then similarly we can find I_2, I_3 and I_4. Therefore we have:

\[
I_2 = - \sum_{k=1}^{n} \frac{1}{r^k (x - a)^k} f^{(n-k)}(ra + (1 - r)x) \mathcal{F}_{\rho, \lambda - k + 2}^{\sigma} [r^\rho (x - a)^\rho] +
\]

\[
+ \frac{(-1)^n}{r^{\lambda + 1} (x - a)^{\lambda + 1}} (\mathcal{J}_{\rho, \sigma, \lambda - n + 1}^{\rho, \lambda + 1}; x^{(1 - r)x}; w f)(x)
\]

Summing now I_1, I_2 I_3 and I_4 we find the desired equality.

\[
\square
\]

Theorem 3. Let $f : [a, b] \to \mathbb{R}$ be an n-time differentiable mapping on (a, b) with $0 < a < b$, $\lambda > n - 1, x \in (a, b)$ and $t, r \in [0, 1]$. If $f^{(n)} \in \mathcal{L}[a, b]$ and $|f^{(n)}|$ is convex on (a, b) then the following inequality for generalized fractional integral operators takes place:

\[
\left| \sum_{k=1}^{n} \frac{(-1)^{k-1}}{(1 - r)^k} \left(\frac{f^{(n-k)}(ra + (1 - r)x)}{(x - a)^k} \mathcal{F}_{\rho, \lambda - k + 2}^{\sigma} [(1 - r)^\rho (x - a)^\rho] +
\right.
ight.
\]

\[
\left. \left. + \frac{f^{(n-k)}(ra + (1 - r)x)}{(b - x)^k} \mathcal{F}_{\rho, \lambda - k + 2}^{\sigma} [(1 - r)^\rho (b - x)^\rho] \right) -
\right.
\]

\[
- \sum_{k=1}^{n} \frac{1}{r^k} \left(\frac{f^{(n-k)}(ra + (1 - r)x)}{(x - a)^k} \mathcal{F}_{\rho, \lambda - k + 2}^{\sigma} [r^\rho (x - a)^\rho] +
\right.
\]

\[
\left. \left. + \frac{f^{(n-k)}(ra + (1 - r)x)}{(b - x)^k} \mathcal{F}_{\rho, \lambda - k + 2}^{\sigma} [r^\rho (b - x)^\rho] \right) +
\right.
\]

\[
+ \frac{(-1)^n}{(1 - r)^{\lambda + 1} (x - a)^{\lambda + 1}} (\mathcal{J}_{\rho, \sigma, \lambda - n + 1}^{\rho, \lambda + 1}; x^{(1 - r)x}; w f)(a)
\]

\[
+ \frac{1}{r^{\lambda + 1} (x - a)^{\lambda + 1}} (\mathcal{J}_{\rho, \sigma, \lambda - n + 1}^{\rho, \lambda + 1}; x^{(1 - r)x}; w f)(x)
\]

\[
+ \frac{(-1)^n}{(1 - r)^{\lambda + 1} (b - x)^{\lambda + 1}} (\mathcal{J}_{\rho, \sigma, \lambda - n + 1}^{\rho, \lambda + 1}; x^{(1 - r)b}; w f)(b)
\]

\[
\leq
\]

\[
\]
\[
\leq \mathcal{F}_{\rho, \lambda}^{\sigma} ((1 - r)^{\rho}(x - a)^{\rho}w) \left(\frac{|f^{(n)}(ra + (1 - r)x)|}{\lambda + 2} + \frac{|f^{(n)}(a)|}{(\lambda + 1)(\lambda + 2)} \right) + \\
+ \mathcal{F}_{\rho, \lambda}^{\sigma} [r^{\rho}(x - a)^{\rho}w] \left(\frac{|f^{(n)}(x)|}{(\lambda + 2)(\lambda + 1)} + \frac{|f^{(n)}(ra + (1 - r)x)|}{\lambda + 2} \right) + \\
+ \mathcal{F}_{\rho, \lambda}^{\sigma} ((1 - r)^{\rho}(b - x)^{\rho}w) \left(\frac{|f^{(n)}(rx + (1 - r)b)|}{\lambda + 2} + \frac{|f^{(n)}(a)|}{(\lambda + 1)(\lambda + 2)} \right) + \\
+ \mathcal{F}_{\rho, \lambda}^{\sigma} [r^{\rho}(b - x)^{\rho}w] \left(\frac{|f^{(n)}(b)|}{(\lambda + 2)(\lambda + 1)} + \frac{|f^{(n)}(rx + (1 - r)b)|}{\lambda + 2} \right).
\]

Proof. We use the same method as in Theorem 1, we shall apply Lemma 2 and the definition of the convex functions. \[\square\]

References

Received: May 30, 2017; Published: June 28, 2017