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Copyright c© 2017 Eduardo Ibargüen-Mondragón et al. This article is distributed under

the Creative Commons Attribution License, which permits unrestricted use, distribution,

and reproduction in any medium, provided the original work is properly cited.

Abstract

In this work we study the phenol degradation kinetics through the
formulation and analysis of a nonlinear system of ordinary differential
equations. The results suggest that the dynamics of the model is con-
sistent with the phenomenon of phenol mineralization.
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1 Introduction

Natural Organic Matter (NOM) concentration has significantly increased in
the past few decades in almost all supply sources employed to produce drink-
ing water all around the world [1]. It has brought several technical and quality
problems on the product finally consumed. In the other hand, Catalytic Wet
Peroxide Oxidation (CWPO) is an Advanced Oxidation Process (AOP) that
has been highlighted thanks to its very low cost and simple operation, depleting
very efficiently the concentration of almost any organic contaminant dissolved
in water, including NOM [1]. In this sense, to investigate phenol degradation
is quite relevant. For this end, it is necessary to study the concentration of
toxic intermediates in the degradation mechanisms [7]. However, the dynam-
ics of the formation of these intermediaries is still an open field of research.
Notwithstanding the foregoing, the total organic carbon (TOC), instead of
phenol and intermediates, is taken as a surrogate parameter of organic matter
present in water. TOC is assumed as the sum of the contribution of two types
of compounds. The initial phenol concentration is expressed by TOC1 and
the total formation of intermediate is expressed by TOC2 [7]. Above it has
motivated the development of different investigations among which we have
[6, 8, 9, 2], where the mineralization of phenol had been modeling.

The following sections present the formulation of the model, qualitative
analysis, numerical results and discussion.

2 Mathematical model

Tisa et al. in [7] deduced 21 reactions for complete mineralization of phe-
nol by Fe3+/Fe2+/H2O2. However, after some assumptions they reduced the
mechanism to the following three chemical reactions

H2O2
k1−−−−→ 2HO•

TOC1 +HO•
k2−−−−→ TOC2 +H2O

TOC2 +HO•
k3−−−−→ CO2 +H2O

• (1)

where k1, k2 and k3 are kinetic constants. Let x1 = [H2O2], x2 = [HO•],
x3 = [TOC1], x4 = [TOC2], x5 = [H2O

•] and x6 = [CO2]. From the law of
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mass action we obtain the following system of differential equations

dx1
dt

= −k1x1
dx2
dt

= k1x1 − k2x2x3 − k3x2x4
dx3
dt

= −k2x2x3
dx4
dt

= k2x2x3 − k3x2x4
dx5
dt

= k2x2x3 + k3x2x4

dx6
dt

= k3x2x4. (2)

Since chemical reactions are not reversible, then the initial concentrations sat-
isfy

x01 = [H2O2]0 6= 0, x02 = [HO•]0 = 0, x03 = [TOC1]0 6= 0,

x04 = [TOC2]0 = 0, x05 = [H2O
•]0 = 0, and x06 = [CO2]0 = 0. (3)

The set of chemical interest is given by

Ω = {x ∈ R6
+ : x1 + x2 + x5 = x01, 2x3 + x4 + x5 = 2x03, x4 − x5 + 2x6 = 0}

(4)

The following lemma ensures that the system (2) has chemical sense; that is,
every solution that begin there remain there for every t ≥ 0.

Lemma 2.1. The set Ω defined in (4) is positively invariant for solutions
of the system (2).

Proof. Adding the first, second and fifth equations of (7) we have

dx1
dt

+
dx2
dt

+
dx5
dt

= 0. (5)

The solution of (5) subject to the initial conditions (3) is

x1(t) + x2(t) + x5(t) = x01.

Following a similar process we verify the other restrictions of set Ω. On the
other hand, the vector field defined by the right side of (2) points inward in
∂Ω. Therefore, the solutions that start there remain there for all t ≥ 0.
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From the restriction conditions defined in Ω we obtain

x1 = −x5 − x2 + x01

x3 = −
(
x4 + x5

2

)
+ x03

x6 =
x5 − x4

2
. (6)

Substituting (6) into (2) we obtain the following system of differential equations

dx2
dt

=

(
k2
2
− k3

)
x2x4 +

k2
2
x2x5 −

(
k1 + k2x

0
3

)
x2 − k1x5 + k1x

0
1

dx4
dt

= −
(
k2
2

+ k3

)
x2x4 −

k2
2
x2x5 + k2x

0
3x2

dx5
dt

=

(
k3 −

k2
2

)
x2x4 −

k2
2
x2x5 + k2x

0
3x2 (7)

3 Solutions of equilibrium

In this section we will determine the equilibrium solutions of (7), which are
given by the solutions of(

k2
2
− k3

)
x2x4 +

k2
2
x2x5 −

(
k1 + k2x

0
3

)
x2 − k1x5 + k1x

0
1 = 0

−
(
k2
2

+ k3

)
x2x4 −

k2
2
x2x5 + k2x

0
3x2 = 0(

k3 −
k2
2

)
x2x4 −

k2
2
x2x5 + k2x

0
3x2 = 0. (8)

Adding the second and third equation of (8) we obtain

2k2x2

(
x03 −

x4
2
− x5

2

)
= 0. (9)

Replacing x2 = 0 in (8) we have that x5 = x01, x2 and x3 can take any real
value. On the other hand, if x2 6= 0 then from (9) we have

x4 = 2x3(0)− x5. (10)

Substituting (10) in the second equation of (8) we have

−k2
2
x2(2x

0
3 − x5)− k3x2(2x03 − x5)−

k2
2
x2x5 + k2x

0
3x2 = 0. (11)

The solution of (11) is x5 = 2x03, in consequence from (11) and the first equation
of (8) we obtain x4 = 0 and x2 = x01 − 2x03. The following lemma summarizes
the above result
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Lemma 3.1. Always exist a non-isolated equilibrium E1 of the system (7).
If x01 > 2x03, in addition of E1 there exist a isolated equilibrium given by

E0 = (x01 − 2x03, 0, 2x
0
3). (12)

The following corollary is obtained by replacing the values of x02, x
0
4 and x05

in (6)

Corollary 3.2. Always exist a non-isolated equilibrium Ē1 of the system
(2). If x01 > 2x03, in addition of Ē1 there exist a isolated equilibrium given by

Ē0 = (0, x01 − 2x03, 0, 0, 2x
0
3, x

0
3). (13)

4 Stability of the equilibrium solution

Since E1 is a non-isolated equilibrium, in this section we only discuss the local
stability of the isolated equilibrium E0. To this end, note that the Jacobian of
(8) evaluated in E0 is given by

J(E0) =

 −k1 (
k2
2
− k3

)
(x01 − 2x03)

k2
2

(x01 − 2x03)− k1
0 −

(
k2
2

+ k3
)

(x01 − 2x03) −k2
2

(x01 − 2x03)
0

(
k3 − k2

2

)
(x01 − 2x03) −k2

2
(x01 − 2x03)

 . (14)

The eigenvalues of (14) are given by λ1 = −k1 and the roots of

λ2 + (k2 + k3)x
0
2a1λ+ k2k3

(
x02
)2

= 0. (15)

The solutions of (15) are given by

λ± =
−(k2 + k3)x

0
2 ± |(k2 − k3)x02|

2

=
[−(k2 + k3)± |k2 − k3|]x02

2
. (16)

We verify from (16) that λ+ < 0 and λ− < 0. The following lemma summarizes
the above result

Lemma 4.1. The isolated equilibrium E0 is locally asymptotically stable in
Ω.

5 Numerical simulations

In this section, we present numerical simulations of the chemical concentrations
in the phenol mineralization process defined in (1). The velocity constants
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k1 = 0.0012, k2 = 6.35 × 10−10 and k3 = 9.6 × 10−7, and the initial concen-
trations (x01, x

0
2, x

0
3, x

0
4, x

0
5, x

0
6) = (28, 0, 4.4, 0, 0, 0) that we used to perform the

numerical simulations were obtained from [7].

Figure 1 illustrate the dynamical behavior of the concentrations above men-
tioned. The time of the simulations is t = 5000 seg ≈ 83.3min. From the
graphs we observe that the peroxide ([H2O2]) is consumed in approximately
83.3 minutes, at same time the hydroxyl radical ([HO•]) reaches the stabi-
lization concentration of 28 mol. While the initial concentration of phenol
expressed by [TOC1] is consumed in approximately 8.3 minutes, time at which
the maximum total formation of intermediates expressed [TOC2] is reached,
after this time the concentration of [TOC2] begins to be consumed slowly. At
reaction time both water (H2O) and carbon dioxide ([CO2]) increase on a very
small scale.
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Figure 1: Graph of concentrations [H2O2], [HO•], [TOC1], [TOC2], [H2O] and
[CO2] with respect to time. The time of the simlations is t = 5000 seg ≈
83.3min.
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Figure 2 shown graphs of [TOC2], [H2O] and [CO2] with respect to time.
The time of the simulations is t = 200000 seg ≈ 55.6h. This is the time of
stabilization of the concentrations mentioned above, in which [TOC2] is totally
consumed, H2O and [CO2] reach their maximum concentrations 4.6×10−6 mol
and 2.4× 10−6 mol, respectively.
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Figure 2: Graph of concentrations [TOC2], [H2O] and [CO2] with respect to
time. The time of the simlations is t = 200000 seg ≈ 55.6h.

6 Discussion

In this paper we perform a qualitative analysis similar to the one developed in
[3, 4, 5] to analyze a mathematical model for mineralization kinetic of phenol
by Fe+2 , Fe

+
3 and H202 assuming a first order kinetics. Our main objective

was to determine if the initial value problem defined by (2) and (3) is adjusted
to the dynamics of the kinetic reactions defined in (1). In addition, to verify
through mathematical modeling if these reactions have a good performance
in degradation of the phenol and formation of [HO•] . In fact, as we can see
in Figure 1, a complete degradation of the phenol occurs in about 8 minutes,
this opens the possibility that in CWPO a complete degradation of NOM can
be carried out. Numerical simulations show Figures 1 and 2, we observe that
99.9999% of [H2O2] consumed is transformed into [HO•], [TOC1] is consumed
completely and 0.000001% of the [H2O2] remaining is transformed into H2O
and [CO2].
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