Equitable Block Colourings for Systems of 4-Kites

Paola Bonacini
Department of Mathematics and Computer Science, University of Catania
Via le A. Doria 6, Catania University, Italy

Mario Gionfriddo
Department of Mathematics and Computer Science, University of Catania
Via le A. Doria 6, Catania University, Italy

Lucia Marino
Department of Mathematics and Computer Science, University of Catania
Via le A. Doria 6, Catania University, Italy

Abstract

An equitable colouring of a balanced G-design (X, B) is a map $\phi : B \rightarrow C$ such that $|b_i(x) - b_j(x)| \leq 1$ for any $x \in X$ and i, j, with $i \neq j$, being $b_i(x)$ the number of blocks containing the vertex x and coloured with the colour i. A c-colouring is a colouring in which exactly c colours are used. A c-colouring of type s is a colourings in which, for every vertex x, all the blocks containing x are coloured exactly with s colours. A bicolouring, tricolouring or quadricolouring is an equitable colouring with $s = 2$, $s = 3$ or $s = 4$. In this paper we consider systems of graphs consisting of a 4-cycle and a pendant edge. We call such a graph a 4-kite and we consider balanced 4-kite systems. In particular, we prove that c-bicolourings of balanced 4-kite systems exist if and only if $c = 2, 3$.

Mathematics Subject Classification: 05C15

Keywords: 4-kite, $C_4 + e$, block-colourings, G-decomposition
1 Introduction

A G-design of order v is a pair $\Sigma = (X, \mathcal{B})$, where V is the vertex set of Σ elements and \mathcal{B} is a set of copies (called blocks) of G decomposing K_X. For any $x \in V$ the degree $d(x)$ of x is the number of blocks of \mathcal{B} containing x. A G-design $\Sigma = (X, \mathcal{B})$ is called balanced if all the vertices $x \in X$ have the same degree.

A colouring of a G-design $\Sigma = (X, \mathcal{B})$ is a map $\phi : \mathcal{B} \rightarrow C$, where C is a set of colours. A c-colouring is a colouring in which exactly c colours are used.

For any $x \in X$ let $b_i(x)$ be the number of blocks incident with x that are coloured with the colour i. An equitable colouring is a colouring such that $|b_i(x) - b_j(x)| \leq 1$ for any $x \in X$ and i,j, with $i \neq j$. The set of blocks coloured with a colour of \mathcal{C} is a colour class. A c-colouring of type s is a colourings in which, for every vertex x, all the blocks containing x are coloured exactly with s colours. A bicolouring, tricolouring or quadricolouring is an equitable colouring with $s = 2$, $s = 3$ or $s = 4$.

In [6] Colbourn and Rosa consider Steiner Triple Systems, which are, of course, balanced designs having all the vertices of degree $\frac{v-1}{2}$, being v the order. In that paper the authors, considered a partition π of $\frac{v-1}{2}$, introduce the idea of block colourings in which the colours of blocks containing a vertex in a $STS(v)$ are partitioned according to π.

Equitable colourings of STS have been also considered in [8] and later the case of cycle systems (C_4, C_6 and C_8-systems) have been studied in [2, 3, 4, 5, 7, 12].

In this paper we consider equitable colourings of balanced G-designs, as this case appears to be the natural generalization of the case of equitable colourings of cycle systems. In general we consider the colour spectrum of a balanced G-design $\Sigma = (X, \mathcal{B})$ as the set:

$$\Omega^G_s(\Sigma) = \{c \mid \text{there exists an equitable } c\text{-block-colouring of type } s \text{ of } \Sigma\}.$$

It is also considered the set $\Omega^G_s(v) = \bigcup \Omega^G_s(\Sigma)$, where Σ varies in the set of all the G-designs, with G fixed.

The lower s-chromatic index is $\chi^G_s(\Sigma) = \min \Omega^G_s(\Sigma)$ and the upper s-chromatic index is $\overline{\chi}^G_s(\Sigma) = \max \Omega^G_s(\Sigma)$. If $\Omega^G_s(\Sigma) = \emptyset$, then we say that Σ is uncolourable. In the same way we consider $\chi^G_s(v) = \min \Omega^G_s(v)$ and $\overline{\chi}^G_s(v) = \max \Omega^G_s(v)$.

In this paper, we study the case of 4-kite systems, where a 4-kite is a 4-cycle with a pendant edge (in literature it is also denoted by C_4+e). So, a 4-kite on the set of vertices $\{x_1, x_2, x_3, x_4, x_5\}$ is a graph having edges $\{x_1, x_2\}$, $\{x_2, x_3\}$, $\{x_3, x_4\}$, $\{x_4, x_1\}$ and $\{x_1, x_5\}$. A 4-kite system of order v will be denoted by $4KS(v)$ (see [9] as a reference for $4KS$ and [10] as a reference for G-designs in general).
By [1] it is known that a 4KS(v) of order v exists if and only if \(v \equiv 0, 1 \mod 5, \ v > 6 \). Moreover, in [9, Theorem 3.8] it has been proved that a balanced 4KS of order v exists if and only if \(v \equiv 1, 5 \mod 10, \ v \geq 11 \), and in [9, Theorem 2.3] we see that in a balanced 4KS of order v all the vertices have degree \(\frac{v-1}{2} \).

This paper is divided in two parts. In the first one, given by the first two sections, we study decompositions of graphs in 4-kites, providing so the instruments for the second part, in which we study bicolourings of 4-kite systems. In particular, we prove in the main result of the paper that \(c \)-bicolourings of balanced 4-kite systems exist if and only if \(c = 2, 3 \).

2 Decomposition of bipartite graphs in 4-kites

In this section we study the decomposition of bipartite graphs in 4-kites, determining first a necessary and sufficient condition.

Theorem 2.1. The complete bipartite graph \(K_{m,n} \) can be decomposed in 4-kites if and only if \(5 \mid mn \), with \(m, n \neq 3 \) and \(m, n > 1 \).

Proof. \(K_{m,n} \) has \(mn \) edges and clearly \(\frac{mn}{5} \) must be an integer. Moreover, since a 4-kite contains a 4-cycle, it must be also \(m, n > 1 \).

Now, supposed that \(m = 5m' \) for some \(m' \geq 1 \), we need to prove that \(K_{5m',3} \) cannot be decomposed in 4-kites. So let \(X = \{ x_1, \ldots, x_{5m'} \} \) and \(Y = \{ y_1, y_2, y_3 \} \) be two disjoint sets and consider a decomposition of \(K_{X,Y} \) in 4-kites \(B_1, \ldots, B_{3m'} \). In any \(B_j \) there are either 2 vertices of \(X \) and all the 3 of \(Y \) or 3 of \(X \) and 2 of \(Y \). Moreover, in any \(B_j \) there are exactly two elements of \(Y \) of degree at least 2 and in \(B_j \) they are both adjacent to 2 distinct elements of \(X \). Let \(B_1, \ldots, B_r \) be the 4-kites in which \(y_1 \) is a vertex of degree at least 2 and let \(x_1, \ldots, x_{2r} \in X \) be the vertices adjacent to \(y_1 \) and to either \(y_2 \) or \(y_3 \) and note that \(r < 3m' \). This means that in the remaining \(B_{r+1}, \ldots, B_{3m'} \), in which \(y_2 \) and \(y_3 \) are vertices of degree at least 2, \(y_2 \) and \(y_3 \) are both adjacent to \(2(3m' - r) \) vertices in \(\{ x_{2r+1}, \ldots, x_{5m'} \} \). So it must be:

\[
2(3m' - r) \leq 5m' - 2r \Rightarrow m' \leq 0.
\]

This is a contradiction and so we have proved that \(K_{5m',3} \) cannot be decomposed in 4-kites.

Let \(X = \{ x_1, \ldots, x_5 \} \) and \(Y = \{ y_1, y_2 \} \) two disjoint sets. We can decompose \(K_{X,Y} \) in the following two 4-kites:

\[
B_1 = (x_3, y_2, x_2, y_1) - x_1 \quad \text{and} \quad B_2 = (x_5, y_1, x_4, y_2) - x_1.
\]
Let $X = \{x_1, \ldots, x_5\}$ and $Y = \{y_1, \ldots, y_5\}$ two disjoint sets. We can decompose $K_{X,Y}$ in the following 4-kites:

$$
B_1 = (x_1, y_2, x_2, y_1) - x_3, \quad B_2 = (x_2, y_4, x_3, y_3) - x_4,
$$

$$
B_3 = (x_3, y_5, x_4, y_2) - x_5, \quad B_4 = (x_4, y_1, x_5, y_4) - x_1,
$$

$$
B_5 = (x_5, y_3, x_1, y_2) - x_2.
$$

So we have proved that $K_{5,2}$ and $K_{5,5}$ can be decomposed in 4-kites. This implies easily that $K_{5m,n}$ can be decomposed in 4-kites for any $m' \geq 1$ and $n > 1, n \neq 3$.

Indeed, suppose, first, that $m = 1$ and $n = 2h$ for some $h \geq 1$. Let Y_1, \ldots, Y_h pairwise disjoint sets such that $|Y_i| = 2$ for any i. Let us decompose K_{X,Y_i} for any i in a family B_i of 4-kites. So the set $B_1 \cup \cdots \cup B_h$ is a decomposition of $K_{X,Y}$ in 4-kites.

Suppose that $m = 1$ and $n = 5 + 2h$ for some $h \geq 0$. Let $Y_1, \ldots, Y_h + 1$ pairwise disjoint sets such that $|Y_i| = 2$ for any $i = 1, \ldots, h$ and $|Y_{h+1}| = 5$. Let us decompose K_{X,Y_i} for any $i = 1, \ldots, h + 1$ in a family B_i of 4-kites. So the set $B_1 \cup \cdots \cup B_{h+1}$ is a decomposition of $K_{X,Y}$ in 4-kites.

If $m > 1$ we proceed in a similar way and so the statement is proved.

The following remark will be very useful in the next section.

Remark 2.2. Given two disjoint sets X and Y, in the proof of Theorem 2.1 we have seen that, if $|X| = 5$ and $|Y| = 5$, $K_{X,Y}$ can be decomposed in 4-kites, in such a way that for any $x \in X$ we have $d(x) = 3$ and for any $y \in Y$ we have $d(y) = 2$.

The following result is useful because it is more precise about the number of blocks containing a vertex in a decomposition of a bipartite graph.

Theorem 2.3. Let X and Y be two disjoint sets such that $|X| = 10m$ and $|Y| = 2n$, for some $m \geq 1$ and $n \geq 2$. Then there exists a decomposition of $K_{X,Y}$ in 4-kites in such a way that for any $x \in X$ and $y \in Y$ $d(x) = n$ and $d(y) = 5m$.

Proof. Let $n = 2$, $Z = \{z_1, \ldots, z_5\}$ and $Y = \{y_1, \ldots, y_5\}$. Let us decompose $K_{Z,Y}$ in the following 4-kites:

$$
B_1 = (y_2, z_2, y_1, z_1) - y_3, \quad B_2 = (y_3, z_2, y_4, z_3) - y_1,
$$

$$
B_3 = (z_5, y_3, z_4, y_2) - z_3, \quad B_4 = (z_5, y_1, z_4, y_4) - z_1.
$$

Then it is easy to see that any element in Z has degree 2, y_1 and y_3 have degree 3 and y_2 and y_4 have degree 2.

This implies easily the statement in the case $m = 1$ and $n = 2$. Indeed, let $X = X_1 \cup X_2$, with X_1 and X_2 disjoint sets such that $|X_1| = |X_2| = 5$. Then we
can decompose \(K_{X,Y} \) in a family \(B_1 \) of 4-kites in such a way that any \(x \in X_1 \) have degree 2, \(y_1 \) and \(y_3 \) have degree 3 and \(y_2 \) and \(y_4 \) have degree 2. Similarly, we can decompose \(K_{X,Y} \) in a family \(B_2 \) of 4-kites in such a way that any \(x \in X_2 \) have degree 2, \(y_1 \) and \(y_3 \) have degree 2 and \(y_2 \) and \(y_4 \) have degree 3. The set \(B_1 \cup B_2 \) is a decomposition of \(K_{X,Y} \) in 4-kites which gives us the statement in the case \(m = 1 \) and \(n = 2 \).

Let \(n = 3 \), \(Z = \{z_1, \ldots, z_5\} \) and \(Y = \{y_1, \ldots, y_6\} \). Let us decompose \(K_{Z,Y} \) in the following 4-kites:

\[
B_1 = (y_2, z_2, y_1, z_1) - y_3, \quad B_2 = (y_4, z_4, y_3, z_3) - y_5, \quad B_3 = (y_6, z_1, y_5, z_5) - y_1, \\
B_4 = (z_5, y_3, z_2, y_4) - z_1, \quad B_5 = (z_3, y_1, z_4, y_2) - z_5, \quad B_6 = (z_2, y_5, z_4, y_6) - z_3.
\]

Then it is easy to see that any element in \(Z \) has degree 3, \(y_1, y_3 \) and \(y_5 \) have degree 3 and \(y_2, y_4 \) and \(y_6 \) have degree 2.

In a similar way to the previous remark, this implies easily the statement in the case \(m = 1 \) and \(n = 3 \).

Together with the previous remark this proves the statement in the case \(m = 1 \) and \(n \geq 2 \). Indeed, suppose, first, that \(n = 2h \) for some \(h \geq 2 \). Let \(Y_1, \ldots, Y_h \) pairwise disjoint sets such that \(|Y_i| = 4 \) for any \(i \). Let us decompose \(K_{X,Y_i} \) for any \(i \) in a family \(B_i \) of 4-kites in such a way that \(d(x) = 2 \) for any \(x \in X \) and \(d(y) = 5 \) for any \(y \in Y_i \). Then set \(B_1 \cup \cdots \cup B_h \) is a decomposition of \(K_{X,Y} \) in 4-kites such that \(d(x) = 2h = n \) for any \(x \in X \) and \(d(y) = 5 \) for any \(y \in Y \).

Suppose that \(n = 2h + 1 \) for some \(h \geq 2 \). Let \(Y_1, \ldots, Y_h \) pairwise disjoint sets such that \(|Y_i| = 4 \) for any \(i = 1, \ldots, h-1 \) and \(|Y_h| = 3 \). Let us decompose \(K_{X,Y_i} \) for any \(i = 1, \ldots, h-1 \) and \(K_{X,Y_h} \) in a family \(B_i \) of 4-kites in such a way that \(d(x) = 2 \) for any \(x \in X \) and \(d(y) = 5 \) for any \(y \in Y_i \) and \(K_{X,Y_h} \) in a family \(B_h \) of 4-kites in such a way that \(d(x) = 3 \) for any \(x \in X \) and \(d(y) = 5 \) for any \(y \in Y_h \). Then set \(B_1 \cup \cdots \cup B_h \) is a decomposition of \(K_{X,Y} \) in 4-kites such that \(d(x) = 2h + 1 = n \) for any \(x \in X \) and \(d(y) = 5 \) for any \(y \in Y \).

Now, in a similar way we get the statement for any \(m \geq 1 \) and \(n \geq 2 \) \(\square \)

Corollary 2.4. For any \(m \geq 1 \) there exists a decomposition in 4-kites of the complete equipartite graph \(K_{10m,10m} \) such that any vertex has degree \(5m \).

3 Decomposition of unions of graphs in 4-kites

In this section we are going to prove some lemmas that will be used later in some constructions to obtain equitable colourings of 4-kite systems. First, let us recall the following definitions.

Definition 3.1. Let \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \) be two simple graphs, having \(V_1 \) and \(V_2 \) as sets of vertices and \(E_1 \) and \(E_2 \) as sets of edges. The union of \(G_1 \) and \(G_2 \) is the graph \(G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2) \) having as set of vertices \(V_1 \cup V_2 \) and as set of edges \(E_1 \cup E_2 \).
Definition 3.2. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple graphs, having V_1 and V_2 as sets of vertices and E_1 and E_2 as sets of edges, and suppose that $V_2 \subseteq V_1$. The difference of G_1 and G_2 is the graph $G_1 - G_2 = (V_1, E_1 \setminus E_2)$ having as set of vertices V_1 and as set of edges $E_1 \setminus E_2$.

The results in this section will be proved using some basic decompositions that we will show in examples. Here we have the first:

Example 3.3. Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and $Y = \{y_1, y_2, y_3, y_4, y_5, y_6\}$ two disjoint sets. Let us consider the following blocks:

$$B_1 = (y_6, x_2, y_4, x_1) - x_3, B_2 = (x_4, y_5, x_3, y_2) - x_5, B_3 = (x_4, y_6, x_5, y_3) - x_1,$$
$$B_4 = (y_2, x_1, y_1, x_2) - y_5, B_5 = (y_5, x_1, x_4, x_5) - x_2, B_6 = (y_3, x_2, x_4, x_3) - y_6,$$
$$B_7 = (x_4, y_4, x_5, y_1) - x_3, B_8 = (x_5, x_1, x_2, x_3) - y_4.$$

Then these blocks are a decomposition of the graph $K_{X,Y} \cup K_X$ and it is easy to see that for any $x \in X$ we have $d(x) = 5$, while y_1, y_2, y_3 have degree 2 and y_4, y_5, y_6 have degree 3.

The first of the technical lemmas proved in this section is the following.

Lemma 3.4. Let X_1, \ldots, X_{2m}, Y pairwise disjoint sets such that $|X_i| = 5$ for any i and $|Y| = 11$. Then there exists a decomposition in 4-kites of $K_{X_1 \cup \cdots \cup X_{2m} \cup Y} - \cup_{i=1}^m K_{X_i, X_{i+m} \cup K_Y}$ such that $d(x) = 5m + 3$ for any $x \in X_i$, with $i \in \{1, \ldots, m\}$, $d(x) = 5m + 2$ for any $x \in X_j$, with $j \in \{m+1, \ldots, 2m\}$, and $d(y) = 5m$ for any $y \in Y$.

Proof. Let Y_1 and Y_2 disjoint sets such that $Y = Y_1 \cup Y_2$, with $|Y_1| = 6$ and $|Y_2| = 5$. In particular let $Y_1 = \{y_1, \ldots, y_6\}$. Let us consider:

- the family A_i, for any $i \in \{1, \ldots, m\}$, decomposing $K_{X_i, Y_1} \cup K_{X_i}$ in 4-kites in such a way that $d(x) = 5$ for any $x \in X_i$, y_1, y_2, y_3 have degree 3 and y_4, y_5, y_6 have degree 2 (see Example 3.3);

- the family B_i, for any $i \in \{m+1, \ldots, 2m\}$, decomposing $K_{X_i, Y_1} \cup K_{X_i}$ in 4-kites in such a way that $d(x) = 5$ for any $x \in X_i$, y_1, y_2, y_3 have degree 2 and y_4, y_5, y_6 have degree 3 (see Example 3.3);

- the family C_i, for any $i \in \{1, \ldots, m\}$, decomposing K_{X_i, Y_2} in 4-kites in such a way that $d(x) = 3$ for any $x \in X_i$ and $d(y) = 2$ for any $y \in Y_2$ (see Remark 2.2);

- the family D_i, for any $i \in \{m+1, \ldots, 2m\}$, decomposing K_{X_i, Y_2} in 4-kites in such a way that $d(x) = 2$ for any $x \in X_i$ and $d(y) = 3$ for any $y \in Y_2$ (see Remark 2.2);
the family E_{ij}, for any $i, j \in \{1, \ldots, m\}$ with $i \neq j$, decomposing $K_{X_i \cup X_{i+1m}, X_j \cup X_{j+1m}}$ in 4-kites in such a way that all the vertices have degree 5 (see Corollary 2.4).

Then, called \mathcal{F} the set of all these blocks, it easy to see that the blocks of \mathcal{F} are a decomposition of $K_{X_1 \cup \cdots \cup X_{2m} \cup Y} = (\bigcup_{i=1}^{m} K_{X_i, X_{i+1m}} \cup K_Y)$ that satisfy the conditions of the statement.

The next lemmas will be proved using the following:

Example 3.5. Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and $Y = \{y_1, y_2, y_3, y_4, y_5\}$ be two disjoint sets. Let us consider the following blocks:

$$
B_1 = (x_3, x_4, y_1, x_2) - x_1, \quad B_2 = (x_3, y_2, x_4, x_1) - x_5, \\
B_3 = (x_4, x_2, y_3, x_5) - y_4, \quad B_4 = (x_5, x_2, y_5, x_3) - y_1, \quad B_5 = (y_3, x_3, y_4, x_4) - y_5, \\
B_6 = (y_1, x_1, y_5, x_5) - y_2, \quad B_7 = (y_2, x_2, y_4, x_1) - y_3.
$$

Then these blocks are a decomposition of the graph $K_{X, Y} \cup K_X$ and it is easy to see that for any $x \in X$ we have $d(x) = 4$ and for any $y \in Y$ we have $d(y) = 3$.

Lemma 3.6. Let X_1, \ldots, X_{2m} pairwise disjoint sets such that $|X_i| = 5$ for any i. Then there exists a decomposition of $K_{X_1 \cup \cdots \cup X_{2m}} - (K_{X_i} \cup \cdots \cup K_{X_m})$ in such a way that $d(x) = 5m - 2$ for any $x \in X_1 \cup \cdots \cup X_m$ and $d(y) = 5m - 1$ for any $y \in X_{m+1} \cup \cdots \cup X_{2m}$.

Proof. By Example 3.5 we can decompose $K_{X_i, X_{i+1m}} \cup K_{X_{i+1m}}$ for any $i = 1, \ldots, m$ in a family A_i of 4-kites in such a way that $d(x) = 3$ for any $x \in X_i$ and $d(y) = 4$ for any $y \in X_{i+1}$.

By Corollary 2.4 we can decompose $K_{X_i \cup X_{i+1m}, X_j \cup X_{j+1m}}$ for any $i, j = 1, \ldots, m$, with $i \neq j$, in a family B_{ij} of 4-kites in such a way that $d(x) = 5$ for any vertex $x \in X_i \cup X_{i+1m} \cup X_j \cup X_{j+1m}$.

Let $\mathcal{C} = \bigcup_i A_i \cup \bigcup_{i \neq j} B_{ij}$. Then the blocks of the family \mathcal{C} are a decomposition of $K_{X_1 \cup \cdots \cup X_{2m}} - (K_{X_1} \cup \cdots \cup K_{X_m})$ in 4-kites such that $d(x) = 5m - 2$ for any $x \in X_1 \cup \cdots \cup X_m$ and $d(y) = 5m - 1$ for any $y \in X_{m+1} \cup \cdots \cup X_{2m}$.

Lemma 3.7. Let X_1, \ldots, X_{4m+2} pairwise disjoint sets such that $|X_i| = 5$ for any i. Then there exists a decomposition of:

$$
K_{X_1 \cup \cdots \cup X_{2m+1}, X_{2m+2} \cup \cdots \cup X_{4m+2}} \cup K_{X_1 \cup \cdots \cup X_{2m+2} \cup \cdots \cup X_{3m+2}}
$$

in such a way that $d(x) = 5m + 4$ for any $x \in X_i$, with $i \in \{1, \ldots, m\} \cup \{2m + 2, \ldots, 3m + 2\}$ and $d(y) = 5m + 3$ for any $y \in X_j$, with $j \in \{m + 1, \ldots, 2m + 1\} \cup \{3m + 3, \ldots, 4m + 2\}$.

Proof. Let us consider:
• for any $i = m + 1, \ldots, 2m$ the family A_i of blocks obtained by decomposing $K_{x_1, x_{2m+2}}$ in 4-kites in such a way that $d(y) = 3$ for any $y \in X_i$ and $d(x) = 2$ for any $x \in X_{2m+2}$ (see Remark 2.2);
• for any $i = 1, \ldots, m$ the family B_i of blocks obtained by decomposing $K_{x_1, x_{2m+2}} \cup K_{x_i}$ in 4-kites in such a way that $d(x) = 4$ for any $x \in X_i$ and $d(y) = 3$ for any $y \in X_{2m+2}$ (see Example 3.5);
• for any $i = 3m + 3, \ldots, 4m + 2$ the family C_i of blocks obtained by decomposing $K_{x_i, x_{2m+1}}$ in 4-kites in such a way that $d(x) = 3$ for any $x \in X_i$ and $d(y) = 2$ for any $y \in X_{2m+1}$ (see Remark 2.2);
• for any $i = 2m + 3, \ldots, 3m + 2$ the family D_i of blocks obtained by decomposing $K_{x_i, x_{2m+1}} \cup K_{x_i}$ in 4-kites in such a way that $d(x) = 4$ for any $x \in X_{2m+1}$ and $d(y) = 3$ for any $y \in X_{2m+1}$ (see Example 3.5);
• the family E of blocks obtained by decomposing $K_{x_1 \cup \ldots \cup x_{2m}, x_{2m+2} \cup \ldots \cup x_{4m+2}}$ in 4-kites in such a way that all the vertices have degree $5m$ (see Corollary 2.4);
• the family F of blocks obtained by decomposing $K_{x_{2m+1}, x_{2m+2}} \cup K_{x_{2m+2}}$ in 4-kites in such a way that $d(x) = 4$ for any $x \in X_{2m+2}$ and $d(y) = 3$ for any $y \in X_{2m+1}$ (see Example 3.5).

Then, called G the set of all these blocks, it easy to see that the blocks of G are a decomposition of $K_{x_1 \cup \ldots \cup x_{2m+1}, x_{2m+2} \cup \ldots \cup x_{4m+2}} \cup K_{x_1} \cup \ldots \cup K_{x_m} \cup K_{x_{2m+1}} \cup \ldots \cup K_{x_{4m+2}}$ that satisfy the conditions of the statement. \hfill \Box

For the next results, we need to fix some notation. Given $X = \{x_1, x_2, x_3, x_4, x_5\}$, we denote by H_X the graph on the vertex set X having edges:

$$\{\{x_1, x_2\}, \{x_1, x_3\}, \{x_2, x_3\}, \{x_3, x_4\}, \{x_4, x_5\}\}.$$

Recalling that a complete graph on 5 vertices cannot be decomposed in 4-kites, we have the following:

Remark 3.8. Given $X = \{x_1, x_2, x_3, x_4, x_5\}$, it is easy to see that the complete graph K_X can be decomposed in the graph H_X and in the 4-kite $G = (x_2, x_4, x_1, x_5) - x_3$.

Example 3.9. Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and $Y = \{y_1, y_2, y_3, y_4, y_5\}$ be two disjoint sets. Consider the following blocks:

$$B_1 = (y_1, x_3, x_1, x_2) - y_3, \ B_2 = (y_2, x_5, x_4, x_3) - y_4, \ B_3 = (y_3, x_1, y_5, x_3) - x_2, \ B_4 = (y_2, x_4, y_4, x_2) - y_5, \ B_5 = (y_1, x_5, y_4, x_1) - y_2, \ B_6 = (y_3, x_5, y_5, x_4) - y_1.$$
It is easy to see that these blocks are a decomposition of the graph $K_{X,Y} \cup H_X$ and, moreover, in such a decomposition all the vertices of X and Y have degree 3.

Example 3.10. Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and $Y = \{y_1, y_2, y_3, y_4, y_5\}$ be two disjoint sets. Consider the following blocks:

$$B_1 = (x_4, x_5, y_1, x_3) - x_1, \quad B_2 = (x_3, x_2, x_1, y_2) - x_4, \quad B_3 = (x_2, y_2, x_5, y_3) - x_3, $$

$$B_4 = (x_3, y_5, x_2, y_4) - x_5, \quad B_5 = (x_1, y_3, x_4, y_1) - x_2, \quad B_6 = (x_1, y_4, x_4, y_5) - x_5.$$

It is easy to see that these blocks are a decomposition of the graph $K_{X,Y} \cup H_X$ and, moreover, in such a decomposition $d(x) = 4$ for any $x \in X$ and $d(y) = 2$ for any $y \in Y$.

Keeping this notation we prove the following:

Lemma 3.11. Let X_1, \ldots, X_{2m+1} pairwise disjoint sets such that $|X_i| = 5$ for any i. Let G_i be a 4-kite having as set of vertices X_i, for any i, and let $H_{X_i} = K_{X_i} - G_i$ then there exists a decomposition in 4-kites of $K_{X_1 \cup \cdots \cup X_{2m+1}} - (G_1 \cup \cdots \cup G_{2m} \cup H_{X_{2m+1}})$ in such a way that all the vertices have degree $5m+1$.

Proof. Let us consider:

- the graph G_{2m+1};
- for $i \in \{1, \ldots, m\}$ the family A_i of blocks obtained by the decomposition of $K_{X_i, X_{2m+1}} \cup H_{X_i}$, in such a way that $d(x) = 4$ for any $x \in X_i$ and $d(y) = 2$ for any $y \in X_{2m+1}$ (see Example 3.10);
- for $i \in \{m+1, \ldots, 2m\}$ the family B_i of blocks obtained by the decomposition of $K_{X_i, X_{2m+1}} \cup H_{X_i}$, in such a way that any vertex has degree 3 (see Example 3.9);
- if $m \geq 2$, for any $i, j \in \{1, \ldots, m\}$, with $i \neq j$, the family C_{ij} of blocks obtained by the decomposition of $K_{X_i \cup X_{i+m}, X_j \cup X_{j+m}}$, in such a way that any vertex has degree 5 (see Corollary 2.4);
- for $i \in \{1, \ldots, m\}$ the family D_i of blocks obtained by the decomposition of $K_{X_i, X_{i+m}}$ in such a way that $d(x) = 2$ for any $x \in X_i$ and $d(y) = 3$ for any $y \in X_{i+m}$ (see Remark 2.2).

Let the \mathcal{E} be the collection of all these blocks. Then it is easy to see that the blocks of \mathcal{F} are a decomposition of $K_{X_1 \cup \cdots \cup X_{2m+1}} - (G_1 \cup \cdots \cup G_{2m} \cup H_{X_{2m+1}})$ and that in this decomposition all the vertices have degree $5m+1$.

At last, we need the following example.
Example 3.12. Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and $Y = \{y_1, y_2, y_3, y_4, y_5\}$ be two disjoint sets. Consider the following blocks:

$$B_1 = (x_3, y_1, y_2, x_4) - x_5, \quad B_2 = (y_3, x_1, x_2, y_4) - y_5,$$
$$B_3 = (x_3, x_1, y_3) - x_5, \quad B_4 = (y_2, x_3, x_2, y_3) - x_4, \quad B_5 = (x_4, y_4, x_5, y_1) - x_2,$$
$$B_6 = (x_2, y_5, x_5, y_2) - x_1, \quad B_7 = (x_3, y_4, x_1, y_5) - x_4.$$

It is easy to see that these blocks are a decomposition of the graph $K_{X,Y} \cup H_X \cup H_Y$ and, moreover, in such a decomposition $d(x) = 4$ for any $x \in X$ and $d(y) = 3$ for any $y \in Y$.

Lemma 3.13. Let X_1, \ldots, X_{2m+1} pairwise disjoint sets such that $|X_i| = 5$ for any i. Let G_i be a 4-kite having as set of vertices X_i, for any i. Then there exists a decomposition in 4-kites of $K_{X_1 \cup \cdots \cup X_{2m+1}} - (G_1 \cup \cdots \cup G_{2m+1})$ in such a way that all the vertices have degree $5m + 1$.

Proof. In Remark 3.8 we have seen that for any i the complete graph K_{X_i} can be decomposed in the 4-kite G_i and in a graph that we denoted by H_{X_i}. Keeping this notation, we can consider:

- a family \mathcal{A} of blocks obtained by the decomposition of $K_{X_1, X_{2m+1}} \cup H_{X_1} \cup H_{X_{2m+1}}$, in such a way that $d(x) = 4$ for any $x \in X_1$ and $d(y) = 3$ for any $y \in X_{2m+1}$ (see Example 3.12);

- if $m \geq 2$, for $i \in \{2, \ldots, m\}$ the family \mathcal{B}_i of blocks obtained by the decomposition of $K_{X_i, X_{2m+1}} \cup H_{X_i}$, in such a way that $d(x) = 4$ for any $x \in X_i$ and $d(y) = 2$ for any $y \in X_{2m+1}$ (see Example 3.10);

- for $i \in \{m+1, \ldots, 2m\}$ the family \mathcal{C}_i of blocks obtained by the decomposition of $K_{X_i, X_{2m+1}} \cup H_{X_i}$, in such a way that any vertex has degree 3 (see Example 3.9);

- if $m \geq 2$, for any $i, j \in \{1, \ldots, m\}$, with $i \neq j$, the family \mathcal{D}_{ij} of blocks obtained by the decomposition of $K_{X_i \cup X_{i+m}, X_j \cup X_{j+m}}$, in such a way that any vertex has degree 5 (see Corollary 2.4);

- for $i \in \{1, \ldots, m\}$ the family \mathcal{E}_i of blocks obtained by the decomposition of $K_{X_i, X_{i+m}}$ in such a way that $d(x) = 2$ for any $x \in X_i$ and $d(y) = 3$ for any $y \in X_{i+m}$ (see Remark 2.2).

Let \mathcal{F} be set of all these blocks. Then it is easy to see that the blocks of \mathcal{F} are a decomposition of $K_{X_1 \cup \cdots \cup X_{2m+1}} - (G_1 \cup \cdots \cup G_{2m+1})$ and that in this decomposition all the vertices have degree $5m + 1$.

\[\square\]
4 On the upper 2-chromatic index

In this section we are going to determine for any order an upper bound for the number of colours in a bicolouring of a 4-kite system.

Lemma 4.1. Let \mathcal{B} a family of 4-kites having set of vertices X. If any vertex of X belongs to at least n blocks of \mathcal{B}, then $|X| \geq 2n + 1$.

Proof. Let us suppose that every vertex in X is adjacent to at most $2n - 1$ vertices of X. Given $x \in X$, let a_x be the number of blocks in which x has degree 1, b_x the number of blocks in which x has degree 2 and c_x the number of blocks in which x has degree 3. Then, we have:

$$a_x + 2b_x + 3c_x \leq 2n - 1. \quad (1)$$

Moreover, $\sum_{x \in X} a_x = |\mathcal{B}|$, $\sum_{x \in X} b_x = 3|\mathcal{B}|$ and $\sum_{x \in X} c_x = |\mathcal{B}|$. So by (1) we get:

$$10|\mathcal{B}| \leq |X|(2n - 1). \quad (2)$$

However, by hypothesis it must be $|\mathcal{B}| \geq \frac{n|X|}{5}$. This contradicts (2) and so the statement is proved. \hfill \square

Now we can prove the following:

Theorem 4.2. Given a 4-kite G, $\overline{\chi}_2^G(v) \leq 3$ for any $v \equiv 1, 5 \ (\text{mod } 10)$, $v \geq 11$.

Proof. Let $\Sigma = (V, \mathcal{B})$ be a 4KS(v) and let $\phi: \mathcal{B} \to C$ be a c-bicolouring of Σ. So $|C| = c$ and let $\gamma \in C$. We know that any element $v \in V$ is incident with exactly $\frac{v - 1}{2}$ blocks of \mathcal{B}. In particular, any element $v \in V$ incident with blocks colored with γ must be incident with at least $\left\lceil \frac{v - 1}{4} \right\rceil$ blocks colored with γ. So by Lemma 4.1 there are at least $2\left\lceil \frac{v - 1}{4} \right\rceil + 1$ vertices incident with blocks colored with γ. This means that:

$$c \left(2 \left\lceil \frac{v - 1}{4} \right\rceil + 1 \right) \leq 2v,$$

so that $c \leq 3$ if $v \equiv 1, 5 \ (\text{mod } 10)$. If $v \equiv 11, 15 \ (\text{mod } 20)$, then $\left\lceil \frac{v - 1}{4} \right\rceil = \frac{v - 3}{4}$ and we easily get that $c \leq 4$.

Let $c = 4$ and $v \equiv 11, 15 \ (\text{mod } 20)$. Let \mathcal{B}_i be the set of blocks coloured with i, for $i = 1, 2, 3, 4$, and let X_i be the set of vertices incident with the blocks of \mathcal{B}_i. By Lemma 4.1 we know that for any i $|X_i| = 2\left\lceil \frac{v - 1}{4} \right\rceil + 1 + k_i = \frac{v - 1}{2} + k_i$ for some $k_i \geq 0$. Since $\sum_{i=1}^4 |X_i| = 2v$, we get that $\sum_{i=1}^4 k_i = 2$. So there are two possibilities: either $k_1 = k_2 = k_3 = 0$ and $k_4 = 2$ or $k_1 = k_2 = k_3 = 0$ and $k_3 = k_4 = 1$.

Suppose that $k_1 = k_2 = k_3 = 0$ and $k_4 = 2$, so that $|X_1| = |X_2| = |X_3| = \frac{v - 1}{2}$ and $|X_4| = \frac{v + 3}{2}$. So:

$$\frac{v(v - 1)}{10} = |\mathcal{B}| = \sum_{i=1}^4 |\mathcal{B}_i| \leq \frac{3}{10} \frac{v - 1}{2} - \frac{3}{2} \frac{v - 3}{2} + \frac{1}{10} \frac{v + 3}{2} + \frac{1}{2} \frac{v + 1}{2}.$$
This leads to a contradiction. So suppose that $k_1 = k_2 = 0$ and $k_3 = k_4 = 1$. In this case, $|X_1| = |X_2| = \frac{v-1}{2}$ and $|X_3| = |X_4| = \frac{v+1}{2}$ and so:

$$\frac{v(v-1)}{10} = |B| = \sum_{i=1}^{4} |B_i| \leq \frac{2}{10} \cdot \frac{v-1}{2} - \frac{2}{2} + \frac{2}{10} \cdot \frac{v+1}{2} - \frac{2}{2}.$$

We get again a contradiction and this shows that it must be $c \leq 3$.

The main result of the paper is the following:

Theorem 4.3. For a 4-kite G, $\Omega_5^G(v) = \{2, 3\}$ for any $v \equiv 1, 5 \mod 10$, with $v \geq 11$.

In the next sections we will see the proof of this theorem, since we will need to distinguish the cases $v \equiv 1 \mod 20$, $v \equiv 11 \mod 20$, $v \equiv 5 \mod 20$ and $v \equiv 15 \mod 20$.

5 Bicolourings for $v = 10h + 1$

In this section we deal with the case that the order v is $\equiv 1 \mod 10$. We need to distinguish two cases: $v \equiv 1 \mod 20$ and $v \equiv 11 \mod 20$. In this cases we will use the fact there exists for such orders a cyclic $4KS$.

Proof of Theorem 4.3: case $v \equiv 1 \mod 20$. By [9, Theorem 4.1] there exists a cyclic decomposition of the complete graph K_v on \mathbb{Z}_{20h+1} in 4-kites, with $v = 20h + 1$. Let B_1, \ldots, B_{2h} the base block of such a decomposition and let $\Sigma = (\mathbb{Z}_{20h+1}, B)$ the $4KS$ generated, so that the blocks of B are all the translates of the blocks B_i for any $i = 1, \ldots, 2h$. Assign the colour 1 to the blocks B_i and all their translates, for $i \in \{1, \ldots, h\}$ and the colour 2 to the blocks B_i and all their translates, for $i \in \{h+1, \ldots, 2h\}$: this assignment determines a 2-bicolouring of Σ.

Let A and B two disjoint sets such that $|A| = |B| = 10h$ and let $\infty \notin A \cup B$. By [9, Theorem 3.8] there exists a balanced 4-kite design $\Sigma_1 = (A \cup \{\infty\}, B_1)$, so that any element in $A \cup \{\infty\}$ has degree 5h. Similarly, there exists a balanced 4-kite design $\Sigma_2 = (B \cup \{\infty\}, B_2)$, so that any element in $B \cup \{\infty\}$ has degree 5h. By Corollary 2.4 there exists a decomposition in 4-kites C_j, for $j = 1, \ldots, 20h^2$, of the complete equipartite graph $K_{A,B}$, in such a way that any element in $A \cup B$ has degree 5h. So the system $\Sigma = (A \cup B \cup \{\infty\}, B_1 \cup B_2 \cup C_j)$ is a balanced $4KS(v)$. Assign the colour 1 to the blocks of B_1, the colour 2 to the blocks B_2 and the colour 3 to the blocks C_j: this assignment determines a 3-bicolouring of Σ. Now by Theorem 4.2 we get the statement in the case $v \equiv 1 \mod 20$.

In the case $v \equiv 11 \mod 20$ we will use both the difference method technique and the decomposition techniques introduced previously.
Proof of Theorem 4.3: case $v \equiv 11 \mod 20$. (1) Consider on \mathbb{Z}_{20h+11} the blocks $B_i = (2i, 10h + 6, 2i - 1, 0) - (4h + 2 + i)$ for $i = 1, \ldots, 2h$ and the block $C = (4h + 1, 10h + 6, 14h + 8, 0) - (6h + 4)$. Then the system $\Sigma = (\mathbb{Z}_{20h+11}, \mathcal{B})$ having as blocks all the translates of the blocks B_i and of C is a balanced $4KS$ of order $20h + 11$.

Let us assign the colour 1 to the blocks B_i and all their translates, for $i \in \{1, \ldots, h\}$, and to the blocks $C + i = (4h + 1 + i, 10h + 6 + i, 14h + 8 + i, i) - (6h + 4 + i)$ for $i \in \{0, \ldots, 10h + 5\}$, and the colour 2 to the blocks B_i and all their translates, for $i \in \{h + 1, \ldots, 2h\}$ and to the blocks $C + i = (4h + 1 + i, 10h + 6 + i, 14h + 8 + i, i) - (6h + 4 + i)$ for $i \in \{10h + 6, \ldots, 20h + 10\}$: this assignment determines a 2-bicolouring of Σ. Indeed, considered:

$$Y = \{0, 4h + 1, 4h + 2\} \cup \{6h + 4, \ldots, 14h + 6\} \cup \{14h + 8, \ldots, 16h + 9\},$$

the vertices in Y are incident with $5h + 3$ blocks coloured with 1, while the remaining ones are incident with $5h + 2$ blocks coloured with 1 and, conversely, the vertices in Y are incident with $5h + 2$ blocks coloured with 2, while the remaining ones are incident with $5h + 3$ blocks coloured with 2. This shows that $2 \in \Omega_2^C(20h + 11)$ for any $h \geq 0$.

(2) Let $h = 0$. Let us consider on $X = \{0, 1, \ldots, 10\}$ the following blocks:

$$B_1 = (4, 0, 5, 1) - 2, B_2 = (6, 1, 7, 0) - 3, B_3 = (4, 2, 5, 3) - 1,$$
$$B_4 = (6, 3, 7, 2) - 0, B_5 = (5, 8, 6, 4) - 7, B_6 = (6, 5, 9, 7) - 10,$$
$$B_7 = (7, 5, 10, 8) - 4, B_8 = (4, 10, 6, 9) - 8, B_9 = (8, 2, 9, 0) - 1,$$
$$B_{10} = (8, 3, 10, 1) - 9, B_{11} = (2, 3, 9, 10) - 0.$$

Then it is easy to see that the system $\Sigma = (X, \cup_{i=1}^{11} B_i)$ is a balanced $4KS(11)$. Let us assign a colouring in the following way:

1. assign the colour 1 to the blocks B_1, B_2, B_3 and B_4,
2. assign the colour 2 to the blocks B_5, B_6, B_7 and B_8,
3. assign the colour 3 to the blocks B_9, B_{10} and B_{11}.

It is easy to see that this is a 3-bicolouring of Σ and so $3 \in \Omega_2^C(11)$.

(3) Let $h \geq 1$. Let X_1, \ldots, X_{4h}, Y pairwise disjoint sets such that $|X_1| = \cdots = |X_{4h}| = 5$ and $|Y| = 11$. We will construct a $4KS$ of order $20h + 11$ on $X = \cup_{i=1}^{4h} X_i \cup Y$. Let us consider:

- the families \mathcal{A}_1 and \mathcal{A}_2 of blocks such that $\Sigma = (Y, \mathcal{A}_1 \cup \mathcal{A}_2)$ is a $4KS(11)$ and there exists a 2-bicolouring of Σ having colour classes \mathcal{A}_1 and \mathcal{A}_2 (possible by what we just proved);
Proof of Theorem 4.3: case v dealt with in the next section, and even in the case $v \not\equiv 6$ the statement in the case $v \in \mathbb{N}$ proves that 3.

It is easy to see that with this assignment ϕ for $i \in \{1, \ldots, h\}$ and $j \in \{h+1, \ldots, 4h\}$, and $d(y) = 5h$ for any $y \in Y$ (see Lemma 3.4);.

for $i \in \{1, \ldots, h\}$ the families D_i of blocks obtained by decomposing $K_{X_{i+1}}$ in such a way that $d(x) = 2$ for any $x \in X_i$ and $d(y) = 3$ for any $y \in X_{i+h}$ (see Remark 2.2);

the family of blocks E obtained by decomposing $K_{X_1 \cup \cdots \cup X_{2h+1}}$ in such a way that all the vertices have degree $5h$ (see Corollary 2.4).

It is not difficult to see that, called F the set of all these blocks, $\Sigma' = (X, F)$ is a balanced 4KS of order $20h + 11$. Let us assign a colouring $\phi : F \to \{1, 2, 3\}$ in the following way:

1. let us assign the colour 1 to the families of blocks A_1 and B;
2. let us assign the colour 2 to the families of blocks A_2 and C;
3. let us assign the colour 3 to the families of blocks E and D_i for $i \in \{1, \ldots, h\}$.

It is easy to see that with this assignment ϕ is a 3-bicolouring of Σ, so that this proves that $3 \in \Omega_2^G(20h + 11)$ for any $h \geq 1$. Now by Theorem 4.2 we get the statement in the case $v \equiv 1 \mod 20$.

6 Bicolourings for $v = 20h + 5$

Even in the case $v \equiv 5 \mod 10$ we will distinguish two cases, $v \equiv 5 \mod 20$, which will be dealt with in this section, and $v \equiv 15 \mod 20$, which will be dealt with in the next section.

Proof of Theorem 4.3: case $v \equiv 5 \mod 20$. (1) Let us consider on $X = \mathbb{Z}_{4h+1} \times \{1, 2, 3, 4, 5\}$ the following 4-kites:

- $A_{ij} = ((j+1)_{i+3}, (2h+1)_{i}, (j+1)_{i+1}, 0_i) - j_i$ for any $i \in \{1, \ldots, 5\}$, $j \in \{1, \ldots, 2h\}$, with $(i, j) \neq (1, 1)$, where the indices are taken mod 5,
- $B = ((2h+1), 2, 0, 2) - 3$,
\begin{itemize}
 \item $C = (2, 1, 1, 0, 5, 1) - 2_4$,
 \item $D = (0, 1, 4, 2, 5, 1) - 2_3$.
\end{itemize}

Denoted by \mathcal{B} the set of all the translates of these blocks, it is easy to see that the system $\Sigma = (X, \mathcal{B})$ is a balanced $4K \Sigma(20h + 5)$. Moreover, let us assign the colour 1 to the blocks B, C, A_{ij} for any i and $j \in \{1, \ldots, h\}$, with $(i, j) \neq (1, 1)$, and all their translates and the colour 2 to the blocks D, A_{ij} for any i and $j \in \{h + 1, \ldots, 2h\}$ and all their translates. Then, this assignment determines a 2-bicolouring of Σ and this shows that $2 \in \Omega_2^G(20h + 5)$ for any $h \geq 1$.

\(2\) Let $h \geq 2$. We will show another construction in order to prove that $2 \in \Omega_2^G(20h + 5)$ for $h \geq 2$. In this case we will use 2-bicolourings of $4K \Sigma(20k + 1)$ for some k.

Let us consider X_1, \ldots, X_6 and Y_1, \ldots, Y_4 pairwise disjoint sets such that $|X_i| = 4$ for any $i = 1, \ldots, 6$ and $|Y_j| = 5h - 5$ for $j = 1, \ldots, 4$. Let us consider also an element $\infty \notin X \cup Y$. Let us consider:

\begin{itemize}
 \item a $4K \Sigma \Sigma_1 = \{(\bigcup_{i=1}^6 X_i \cup \{\infty\}, \mathcal{B}_1 \cup \mathcal{B}_2)\}$ with a 2-bicolouring, where \mathcal{B}_1 and \mathcal{B}_2 are the two colour classes (possible by the case $h = 1$);
 \item a $4K \Sigma \Sigma_2 = \{(\bigcup_{j=1}^4 Y_j \cup \{\infty\}, \mathcal{C}_1 \cup \mathcal{C}_2)\}$ with a 2-bicolouring, where \mathcal{C}_1 and \mathcal{C}_2 are the two colour classes (see the case $v = 1 \mod 20$ already proved);
 \item the family \mathcal{D}_{ij}, for $(i, j) \in \{(1, 1), (1, 3), (4, 1), (4, 3)\}$ obtained by the decomposition of $K_{X_i \cup X_i+1 \cup X_i+2 \cup Y_j \cup Y_j+1}$ in 4-kites in such a way that $d(x) = 5h - 5$ for any $x \in X_i \cup X_i+1 \cup X_i+2$ and $d(y) = 6$ for any $y \in Y_j \cup Y_j+1$ (see Theorem 2.3).
\end{itemize}

Let now \mathcal{E} be the family of the blocks of $\mathcal{B}_1, \mathcal{B}_2, \mathcal{C}_1, \mathcal{C}_2$ and \mathcal{D}_{ij}, for $(i, j) \in \{(1, 1), (1, 3), (4, 1), (4, 3)\}$. Then it is easy to see that the system $\Sigma = \{(\bigcup_{j=1}^4 Y_j \cup \bigcup_{i=1}^6 X_i \cup \{\infty\}, \mathcal{E})\}$ is a balanced $4K \Sigma$ of order $20h + 5$.

Let us assign the colour 1 to the blocks of $\mathcal{B}_1, \mathcal{C}_1, \mathcal{D}_{11}$ and \mathcal{D}_{43} and the colour 2 to the blocks of $\mathcal{B}_2, \mathcal{C}_2, \mathcal{D}_{13}$ and \mathcal{D}_{41}. It is easy to see that this is a 2-bicolouring of Σ, because any vertex is incident with $5h + 1$ blocks coloured with 1 and with $5h + 1$ blocks coloured with 2.

\(3\) Now we prove that $3 \in \Omega_2^G(20h + 5)$ for any $h \geq 1$. Let X_1, \ldots, X_{4h+1} be pairwise disjoint sets such that $|X_i| = 5$ for any i. By Remark 3.8 for any i we can decompose the complete graph K_{X_i} in a 4-kite G_i and in a graph that we denote by H_{X_i}. Let us consider:

\begin{itemize}
 \item the family \mathcal{A} of blocks obtained by a decomposition of $K_{X_1 \cup \ldots \cup X_{2h}, X_{2h+1} \cup \ldots \cup X_{4h}}$ in such a way that any vertex has degree $5h$ (see Corollary 2.4);
\end{itemize}
• the family \(B \) of blocks obtained by a decomposition in 4-kites of \(K_{X_1 \cup \cdots \cup X_{2h} \cup X_{4h+1}} \) in such a way that all the vertices have degree \(5h + 1 \) (see Lemma 3.13);

• the family \(C \) of blocks obtained by a decomposition in 4-kites of \(K_{X_{2h+1} \cup \cdots \cup X_{4h} \cup X_{4h+1}} \) in such a way that all the vertices have degree \(5h + 1 \) (see Lemma 3.11);

Denoted by \(D \) the set of all the previous blocks and of the blocks \(G_1, \ldots, G_{4h} \), it is not difficult to see that \(\Sigma = (\cup_{i=1}^{4h+1} X_i, \mathcal{G}) \) is a balanced \(4KS \) of order \(20h + 5 \).

Let us consider the colouring \(\phi : \mathcal{G} \to \{1, 2, 3\} \) defined in the following way:

1. assign the colour 1 to the blocks of the family \(A \) and to the blocks \(G_1, \ldots, G_{4h} \);

2. assign the colour 2 to the blocks of the family \(B \);

3. assign the colour 2 to the blocks of the family \(\mathcal{C} \).

Then it is easy to see that this assignment is a 3-bicolouring of \(\Sigma \), so that \(3 \in \Omega_2^3(20h + 5) \) for any \(h \geq 1 \). So by Theorem 4.2 we get the statement in the case \(v \equiv 1 \mod 20 \).

\[\square \]

7 Bicolourings for \(v = 20h + 15 \)

At last we suppose that \(v \equiv 15 \mod 20 \).

Proof of Theorem 4.3: case \(v \equiv 15 \mod 20 \). (1) Let \(X = \mathbb{Z}_{10h+7} \times \{1, 2\} \cup \{\infty\} \). Consider the following blocks:

• \(A_i = (\infty, (i + 5h + 3)_1, (i - 1)_1, i_2) - (i + 1)_1 \) for \(i \in \{0, \ldots, 10h + 6\} \),

• \(B_1 = (0_2, 3_2, 2_2, 0_1) - 2_1 \),

• \(B_2 = ((10h + 5)_2, (10h + 3)_2, 0_1, 1_1) - (10h + 6)_2 \),

• \(C_i = ((i + 2)_2, (10h + 6)_2, (i + h + 2)_2, 0_1) - (i + 4h + 2)_1 \) for \(i \in \{1, \ldots, h\} \), if \(h > 0 \),

• \(D_i = (h_1, (i + 3h + 2)_1, 0_1, (i + 3h + 2)_2) - (9h + 6)_2 \) for \(i \in \{1, \ldots, h\} \), if \(h > 0 \),

• \(E_i = ((i + 2h + 3)_2, (9h + 7)_2, (i + 4)_1, 0_2) - (i + 2h + 4)_1 \) for \(i \in \{1, \ldots, h\} \), if \(h > 0 \),

• \(F_i = ((i + 2)_1, (9h + 7)_1, (i + 4h + 2)_2, 0_1) - (i + 6h + 2)_2 \) for \(i \in \{1, \ldots, h\} \), if \(h > 0 \).
Let \mathcal{B} be the set of the blocks A_i and of all the translates of B_1, B_2, C_i, D_i, E_i and F_i. It is easy to see that $\Sigma = (X, \mathcal{B})$ is a balanced $4KS$ of order $20h + 15$ for any $h \geq 0$.

Now let us assign a 2-bicolouring of Σ in the following way:

1. let us assign the colour 1 to the blocks A_i for $i \in \{0, \ldots, 5h + 2\}$ and to the blocks B_1, C_i and D_i (these last two only if $h > 0$) and all their translates,

2. let us assign the colour 2 to the blocks A_i for $i \in \{5h + 3, \ldots, 10h + 6\}$ and to the blocks B_2, E_i and F_i (these last two only if $h > 0$) and all their translates.

Then this is a 2-bicolouring of Σ and it shows that $2 \in \Omega_2^G(20h + 15)$.

(2) Let X, Y and Z pairwise disjoint sets such that $|X| = |Y| = |Z| = 5$. Let us consider:

- the family \mathcal{B}_1 of blocks blocks obtained by decomposing $K_{X,Y} \cup K_X$ (see Example 3.5), in such a way that $d(x) = 4$ for any $x \in X$ and $d(y) = 3$ for any $y \in Y$;

- the family \mathcal{B}_2 of blocks blocks obtained by decomposing $K_{X,Z} \cup K_Z$ (see Example 3.5), in such a way that $d(x) = 3$ for any $x \in X$ and $d(z) = 4$ for any $z \in Z$;

- the family \mathcal{B}_3 of blocks blocks obtained by decomposing $K_{Y,Z} \cup K_Y$ (see Example 3.5), in such a way that $d(y) = 4$ for any $y \in Y$ and $d(z) = 3$ for any $z \in Z$.

It is easy to see that $\Sigma = (X \cup Y \cup Z, \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3)$ is a balanced $4KS$ of order 15. We can assign a 3-bicolouring of Σ by assigning the colour 1 to the blocks of \mathcal{B}_1, the colour 2 to the blocks of \mathcal{B}_2 and the colour 3 to the blocks of \mathcal{B}_3. This shows that $3 \in \Omega_2^G(15)$.

(3) Let $h > 0$. Let X_i for $i \in \{1, \ldots, 4h + 3\}$ pairwise disjoint sets such that $|X_i| = 5$ for any i and let $X = \bigcup_{i=1}^{4h+3} X_i$. Consider:

- the family \mathcal{A} of blocks decomposing $K_{X_{1+1}} \cup \cdots \cup X_{2h+2} - (K_{X_1} \cup \cdots \cup K_{X_{h+1}})$ in such a way that $d(x) = 5h + 4$ for any $x \in X_i$, with $i \in \{h+2, \ldots, 2h+2\}$, and $d(y) = 5h + 3$ for any $y \in X_j$, with $j \in \{1, \ldots, h+1\}$ (see Lemma 3.6);

- the family \mathcal{B} of blocks decomposing $K_{X_{2h+3}} \cup \cdots \cup X_{4h+3} - (K_{X_{2h+2}} \cup \cdots \cup K_{X_{3h+2}})$ in such a way that $d(x) = 5h + 4$ for any $x \in X_i$, with $i \in \{3h+3, \ldots, 4h+3\}$, and $d(y) = 5h + 3$ for any $y \in X_j$, with $j \in \{2h+2, \ldots, 3h+2\}$ (see Lemma 3.6);
the family \mathcal{C} of blocks decomposing $K_{X_1 \cup \cdots \cup X_{2h+1} \cup X_{2h+3} \cup \cdots \cup K_{X_{h+1} \cup K_{X_{2h+3}} \cup \cdots \cup K_{X_{2h+1}}}}$ in such a way that $d(x) = 5h + 4$ for any $x \in X_i$, with $i \in \{1, \ldots, h+1\} \cup \{2h+3, \ldots, 3h+2\}$, and $d(y) = 5h + 3$ for any $y \in \{h+2, \ldots, 2h+1\} \cup \{3h+3, \ldots, 4h+3\}$ (see Lemma 3.7).

Let \mathcal{D} be the set of all these blocks. It is not difficult to see that $\Sigma = (X, \mathcal{D})$ is a $4KS(20h+15)$. Now we can assign a 3-bicolouring of Σ in the following way:

1. assign the colour 1 to the blocks of the families \mathcal{A};
2. assign the colour 2 to the blocks of the families \mathcal{B};
3. assign the colour 3 to the blocks of the families \mathcal{C}.

This shows that $3 \in \Omega_2^G(20h+15)$ and so by Theorem 4.2 we get the statement in the case $v \equiv 1 \mod 20$. \hfill \qed

Acknowledgements. The present research has been supported by MIUR-PRIN(2012), INDAM-GNSAGA.

References

Received: September 28, 2016; Published: April 12, 2017