GQVIs for Studying Competitive Equilibrium Problem when Utilities are Locally Lipschitz and Quasi-Concave

F. Rania

Department of Legal, Historical, Economic and Social Sciences
Magna Graecia University of Catanzaro
Campus loc. Germaneto, Viale Europa, 88100 Catanzaro, Italy

Copyright © 2015 F. Rania. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We establish an existence result on competitive equilibrium problem for an exchange economy when the consumers’ utilities are represented by a locally Lipschitz continuous and quasi-concave functions. The consumer’s demand is found to be actually a multi-valued map. Furthermore, any competitive equilibrium satisfies Walras’ law, too. To achieve this goal, the theory of Nonsmooth Analysis combined with the Generalized Quasi-Variational Inequalities (GQVIs) is used.

Mathematics Subject Classification: 91B50, 65K10, 58E17, 58E35

Keywords: Competitive equilibrium, Walras’ law, generalized quasi-variational inequalities, Clarke subdifferential

1 Introduction

Starting from the papers of Benedetti et al. [6] and of Rockafellar et al. [10], our purpose here is to generalize the existence result on Arrow-Debreu equilibrium problem for the pure exchange economies (see for details [4, 9]). At this aim, we weak the assumptions on how the consumer expresses the preferences
when has to choose a commodity bundle among the feasible ones. Specifically, the utility functions are assumed locally Lipschitz continuous and quasi-concave. These facts allow to treat with utility functions not differentiable (but however, existing in real contexts) and to obtain a multi-valued demand function, because quasi-concavity is weaker than concavity and than strictly concavity, too. Non-differentiability implies the use of the Clarke subdifferential (see [7]).

Our main results are Theorems 7 and 10, which derive by variational approach, i.e. by using generalized quasi-variational inequalities (briefly GQVI). In Theorem 7, we show that any solution to a suitable GQVI is a solution to competitive economic equilibrium problem. In Theorem 10, recalling a result of Cubiotti in [8], we show that GQVI problem admits at least one solution. Furthermore, under the assumptions of non-local satiation and global desirability defined in a suitable compact set, in Proposition 5 we show that any competitive equilibrium is a Walras competitive equilibrium.

As said above our existence result on competitive equilibrium is general for the pure exchange economies because it includes the results in [1, 2] and, probability, also the ones in [3, 12] related to the dynamic case introduced in [11, 13] if we replace the concavity condition with quasi-concavity condition.

This paper is organized as follows: in Section 2, we shall describe the model, formulate the competitive economic equilibrium problem and list the assumptions; in Section 3, we shall establish that a solution of the competitive economic equilibrium problem is a solution to a generalized quasi-variational inequality defined on a suitable compact; in Section 4, we shall prove the existence of a solution to GQVI and thus, as consequence, the existence of a competitive equilibrium for the pure exchange economy.

2 Model and assumptions

We consider a pure exchange economy E with ℓ finite types of commodities indexed in $H = \{1, ..., \ell\}$ and n consumers indexed in $I = \{1, ..., n\}$ (where $\ell, n \in \mathbb{N}$).\footnote{We denote by \mathbb{N} and \mathbb{R}, the set of natural number and the field of real numbers, respectively. We write \mathbb{R}^n for the n-dimensional Euclidean space of the real n-vectors $x = (x_1, ..., x_n)$; while, we write \mathbb{R}_+^n, \mathbb{R}_+^n and \mathbb{R}_{0+}^n for the cone of non-negative, positive and strongly positive vectors, respectively. Furthermore, the set $\Delta_{n-1} = \{x \in \mathbb{R}_+^n : \sum_{i=1}^{n} x_i = 1\}$ indicates the unit simplex of \mathbb{R}_+^n. We adopt the usual notation for vector inequalities, that is: for any $x, y \in \mathbb{R}^n$ one has $x \geq y$ if $x - y \in \mathbb{R}_+^n$; $x > y$ if $x - y \in \mathbb{R}_{0+}^n$ and $x \gg y$ if $x - y \in \mathbb{R}_{0+}^n$. We assume \mathbb{R}^n equipped with the standard inner product $\langle x, y \rangle := \sum_{i=1}^{n} x_i y_i$ and with the norm $|x| := \langle (x, x) \rangle^{\frac{1}{2}}$ for any $x, y \in \mathbb{R}^n$. Open and closed balls of centre $x \in \mathbb{R}^n$ with radius $\varepsilon > 0$ are denoted by $B\varepsilon(x)$ and $\overline{B}\varepsilon(x)$, respectively. Given $X \subseteq \mathbb{R}^n$, its interior is $\text{int}(X)$, its boundary is ∂X and its closure is \overline{X}.} We regard \mathbb{R}_+^ℓ as the commodity space. Each consumer $i \in I$ is
characterized by his consumption set $X^{(i)} \subseteq \mathbb{R}^\ell_+$, his preferences described by an utility function $u_i : X^{(i)} \to \mathbb{R}$ and of his initial endowment $\omega^{(i)} \in X^{(i)}$. The aggregate endowment is $\omega := \sum_{i \in I} \omega^{(i)}$. A pure exchange economy is the tuple $\mathcal{E} = \{X^{(i)}, u_i, \omega^{(i)}\}_{i \in I, \omega}$. An allocation is denoted by $x = (x_1, ..., x_n) \in \mathbb{R}^{n \times \ell}$ where $x^{(i)} = (x^{(i)}_1, ..., x^{(i)}_\ell) \in X^{(i)}$ for any $i \in I$. An allocation x is feasible if $\sum_{i \in I} x^{(i)} \leq \omega$. By assuming the vector $p = (p_1, ..., p_\ell) \in P := \Delta_{\ell-1}$ as a price system, for any initial endowment $\omega^{(i)}$ the consumer i’s budget set for $\omega^{(i)}$ is given by the multifunction $B^{(i)} : P \to 2^{\mathbb{R}^\ell_+}$ defined by

$$B^{(i)}(p) = \{ x \in \mathbb{R}^\ell_+ : \langle p, x \rangle \leq \langle p, \omega^{(i)} \rangle \}.$$

A state of \mathcal{E} is a pair $(p, x) \in \mathbb{R}^{\ell \times \ell}_+$ where p is a price system and x is a feasible allocation.

In a pure exchange economy \mathcal{E} where the consumers are considered as price takers, for a suitable price \bar{p}, the problem of any consumer i is to obtain the best commodity bundle $\bar{x}^{(i)}$ into his budget set $B^{(i)}(\bar{p})$ in according to own utility function u_i and, contextually, all together the consumers have to respect the equality between demand and supply for any commodity $h \in H$. Formally, set $B(p) := \prod_{i \in I} B^{(i)}(p)$ one has

Problem 1. Find $(\bar{p}, \bar{x}) \in P \times \mathbb{R}^{\ell \times \ell}_+$ with $x \in B(\bar{p})$ such that:

$$u_i(\bar{x}^{(i)}) = \max_{x^{(i)} \in B^{(i)}(\bar{p})} u_i(x^{(i)}) \quad \forall i \in I \quad (1a)$$

$$\sum_{i \in I} (\bar{x}^{(i)}_h - \omega^{(i)}_h) \leq 0 \quad \forall h \in H \quad (1b)$$

Definition 1. A pure exchange economy \mathcal{E}’s state (\bar{p}, \bar{x}) solving Problem 1 is said to be a competitive equilibrium for the \mathcal{E}.

Definition 2. A competitive equilibrium (\bar{p}, \bar{x}) is said to be a Walras competitive equilibrium if in addition to (1a) and (1b) satisfies also the following condition

$$\langle \bar{p}, \bar{x}^{(i)} - \omega^{(i)} \rangle = 0 \quad \forall i \in I \quad (1c)$$

We list below the assumptions that will use to solve Problem 1.

For any $h \in H$:

Assumption 1. There exists a price q_h such that $q_h \geq \frac{1}{\ell}$ and $q_h \leq p_h$ for $p_h \neq 0$, where p_h is the hth entry of a price system $p \in P$.

For any $i \in I$:

Assumption 2. $\omega^{(i)}$ is such that $\sum_{i \in I} \omega^{(i)} \gg 0$ and contains at least one good $h \in H$ with price $q_h > 0$ or greater $p_h > q_h$;
Assumption 3. \(X^{(i)} \) is a closed, convex subset of \(\mathbb{R}^\ell_+ \).

Assumption 4. Consider an open convex \(A \supseteq X^{(i)} \)

a. \(u_i(x^{(i)}) \) is a local Lipschitz continuous function on \(A \);

b. \(u_i(x^{(i)}) \) is a quasi-concave function on \(A \);

\[
\text{Set } K^{(i)} = \prod_{i \in I} \left(\bigcup_{h \in \mathcal{H}} \left\{ x^{(i)} \in X^{(i)} : x_h^{(i)} = \omega_h^{(i)} \right\} \right) \cap \prod_{h \in \mathcal{H}} \left[0, \sum_{a \in I} \omega_b^{(a)} \right]
\]

c. \(0 \notin \partial^0 (-u_i)(x^{(i)}) \) for all \(x^{(i)} \in K^{(i)} \),

d. \((-u_i)^0(x^{(i)}, i_h) < 0 \) for all \(x^{(i)} \in K^{(i)} \) and \(h \in \mathcal{H} \) such that \(x_h^{(i)} = 0 \) where \(i_h \)

is the unit vector of the \(h \)th axis.

Remark 3. The Assumption 1 guarantees the existence of a positive minimum price \(q_k \) for any commodity \(h \in \mathcal{H} \). This fact, in addition with the Assumption 2, where the initial endowment \(\omega^{(i)} \in \mathbb{R}^\ell_+ \), permits to any consumer \(i \) to be always active in the trades. The Assumption 3 is standard and from \(\omega^{(i)} \in X^{(i)} \) and above considerations one has in particular \(X^{(i)} \subseteq \mathbb{R}^\ell_+ \). The Assumption 4 regards the alternative commodity bundles which each consumer \(i \) choices on the basis of own utility function. In details: 4.a extends the condition of continuity of the preference relation considering, now, not differentiable utilities, too; 4.b assures that the indifference surfaces are convex; 4.c represents the non-satiation condition rewritten in terms of Clark subdifferential; 4.d indicates how the global desirability of a commodity bundle \(x^{(i)} \) changes through the increasing of the Clarke derivatives along each direction.

2 A function \(f : X \to \mathbb{R} \) is said to be *locally Lipschitz continuous* on \(X \subseteq \mathbb{R}^n \) if, for each \(x \in X \), there exist constants \(L > 0 \) and \(\varepsilon > 0 \) such that \(y \in B_\varepsilon(x) \) implies \(|f(y) - f(x)| \leq L|y - x|_n \).

3 A function \(f : X \to \mathbb{R} \) is said to be *quasi-concave* on a convex \(X \subseteq \mathbb{R}^n \) iff for every \(r < \sup_X f \), the set \(\{ x \in X : f(x) \geq r \} \) is convex.

4 Given an open \(A \subseteq \mathbb{R}^n \), a function \(f : A \to \mathbb{R} \), \(x_0 \in A \) and \(z \in \mathbb{R}^n \), the Clarke derivative of \(f \) at \(x_0 \) along the direction \(z \) is defined by \(f^\sigma(x_0, z) := \limsup_{x \to x_0, \sigma \to 0^+} \frac{f(x + \sigma z) - f(x)}{\sigma} \) and the Clarke subdifferential of \(f \) at \(x_0 \) is defined by \(\partial^0 f(x_0) := \{ T \in \mathbb{R}^n : f^\sigma(x_0, z) \geq \langle T, z \rangle, \text{ for all } z \in \mathbb{R}^n \} \).

Note that, from the definition, the Clarke subdifferential is a convex set. Furthermore, if \(f \) is a locally Lipschitz continuous function the Clarke derivative is finite and the Clarke subdifferential is compact in \(\mathbb{R}^n \) expressed by \(f^\sigma(x_0, z) = \max\langle T, z \rangle : T \in \partial^0 f(x_0) \), for all \(z \in \mathbb{R}^n \).
3 Variational approach

Now, the competitive economic equilibrium problem for a pure exchange economy \mathcal{E} is revisited in key of generalized quasi-variational inequality problem.\footnote{Given a set X, we write 2^X for the family of all non-empty subsets of X. A correspondence or a multifunction between two sets X and Y is a function $F: X \to 2^Y$. The graph of a multifunction $F: X \to 2^Y$ is the subset of $X \times X$ defined by $\text{gr}(F) = \{(x, y) \in X \times Y : x \in X \land y \in F(x)\}$. Given $X \subseteq \mathbb{R}^n$ and two multifunctions $\Gamma: X \to 2^X$, $\Phi: X \to 2^{\mathbb{R}^n}$, the generalized quasi-variational inequality problem associated to X, Γ, Φ and denoted briefly $\text{GQVI}(X, \Gamma, \Phi)$, is to find $(\bar{x}, \bar{z}) \in X \times \mathbb{R}^n$ such that $\bar{x} \in \Gamma(\bar{x})$, $\bar{z} \in \Phi(\bar{x})$ and $(\bar{z}, \bar{x} - y) \leq 0$ for all $y \in \Gamma(\bar{x})$.}

Problem 2. Find $(\bar{p}, \bar{x}) \in P \times \mathbb{R}_{n+}^{nxT}$, with $x \in \mathcal{B}(\bar{p})$, such that there exists $T = (T^{(1)}, ..., T^{(n)}) \in \prod_{i \in I} \partial^p(\partial u_i(x^{(i)}))$ satisfying:

$$-\sum_{i \in I} \langle T^{(i)}, x^{(i)} - \bar{x}^{(i)} \rangle + \sum_{i \in I} \langle \bar{x}^{(i)} - \omega^{(i)}, p - \bar{p} \rangle \leq 0, \quad \forall (p, x) \in P \times \mathcal{B}(\bar{p}).$$

Let $K = \prod_{i \in I} K_i$, where $K^{(i)}$ is as in Assumptions 4.c and 4.d.

Proposition 4. Let $(\bar{p}, \bar{x}) \in P \times \mathbb{R}_{n+}^{nxT}$, with $\bar{x} \in \mathcal{B}(\bar{p})$, be satisfying condition (1b) of Problem 1. Then, $\bar{x} \in K$.

Proof. See proof of Proposition 1 of [1].

Proposition 5. Let Assumptions 4.c and 4.d be satisfied. Then, any competitive equilibrium is a Walras competitive equilibrium.

Proof. Let $(\bar{p}, \bar{x}) \in P \times \mathcal{B}(\bar{p})$ be a competitive equilibrium and fix $i \in I$. From Proposition 4, we have $\bar{x}^{(i)} \in K^{(i)}$. So, by Assumption 4.c and condition (1a) of Problem 1 it cannot be $\bar{x}^{(i)} \in \text{int}(\mathcal{B}(\bar{p}))$.

Moreover, Assumption 4.d and again condition (1a) of Problem 1 imply that $x^{(i)}_h > 0$ for all $h \in \mathcal{H}$. Therefore, the equation (1c) is verified, or equivalently, (\bar{p}, \bar{x}) is a Walras competitive equilibrium.

For the next result we need the following Propositions.

Proposition 6. Let Assumptions 4.a and 4.b be satisfied. Let $i \in I$ and let $x^{(i)}$, $z^{(i)} \in \mathbb{R}_{+}^n$ be such that $u_i(x^{(i)}) < u_i(z^{(i)})$. Then, $(-u_i)^\circ(x^{(i)}, z^{(i)} - x^{(i)}) \leq 0$.

Proof. Let $\{(y^{(n)}, t^{(n)})\}$ be a sequence in $A \times (0, 1)$ (the set A is as in Assumptions 4.a and 4.b) such that $(y^{(n)}, t^{(n)}) \to (x^{(i)}, 0)$. From Assumption 4.a (and hence from continuity of u_i) and $u_i(x^{(i)}) < u_i(z^{(i)})$, we can suppose $u_i(y^{(n)}) < u_i(z^{(i)})$ for all $n \in \mathbb{N}$. From Assumption 4.b, one has $u_i(y^{(n)}) \leq u_i(y^{(n)} + t^{(n)}(z^{(i)} - y^{(n)}))$ for all $n \in \mathbb{N}$. Consequently,

$$\limsup_{n \to \infty} \frac{-u_i(y^{(n)} + t^{(n)}(z^{(i)} - y^{(n)})) + u_i(y^{(n)})}{t^{(n)}} \leq 0.$$
Taking into account the arbitrariness of the sequence \(\{(y^{(n)}, t^{(n)})\}\), conclusion follows. \(\square\)

Theorem 7. Let Assumption 1 and 4 entirely be satisfied. Moreover, let
\((\bar{p}, \bar{x}) \in P \times \mathbb{R}^n_+\), with \(\bar{x} \in B(\bar{p})\), be a solution of Problem 2. Then, \((\bar{p}, \bar{x})\) is a solution of Problem 1.

Proof. Assume that \((\bar{p}, \bar{x})\) is a solution to Problem 2.

Let \(T \in \prod_{i \in I} \partial^p(-u_i)(\bar{x}^{(i)})\) satisfying inequality (2). Testing (2) with \((p, \bar{x})\), \(p \in P\), one has \(\langle \sum_{i \in I}(\bar{x}^{(i)} - \omega^{(i)}), \bar{p} - \bar{p}\rangle \leq 0\) for all \(p \in P\). Moreover, from \(\bar{x} \in B(\bar{p})\), we promptly obtain \(\langle \sum_{i \in I}(\bar{x}^{(i)} - \omega^{(i)}), \bar{p}\rangle \leq 0\) for all \(p \in P\). Hence,

\[
\langle \sum_{i \in I}(\bar{x}^{(i)} - \omega^{(i)}), p \rangle = \langle \sum_{i \in I}(\bar{x}^{(i)} - \omega^{(i)}), p - \bar{p}\rangle + \langle \sum_{i \in I}(\bar{x}^{(i)} - \omega^{(i)}), \bar{p}\rangle \leq 0
\]

for all \(p \in P\). Now, from Assumption 1 choosing \(p = (0, 0, 1, 0, ..., 0) \in P\), with 1 at the \(h\)th-position, we obtain condition (1b) of Problem 1.

At this point, we prove condition (1a) of Problem 1. Fix \(i \in I\). Testing (2) with \((\bar{p}, (\bar{x}^{(1)}, ..., \bar{x}^{(i-1)}, x^{(i)}, \bar{x}^{(i+1)}, ..., \bar{x}^{(n)})), x_i \in B^{(i)}(\bar{p})\), we obtain

\[
\langle T^{(i)}, x^{(i)} - \bar{x}^{(i)} \rangle \geq 0.
\] (3)

From Assumption 4.c, there exists \(h \in \mathbb{R}^n\) such that \(\langle T^{(i)}, h \rangle \neq 0\). Without loss of generality, we can suppose \(\langle T^{(i)}, h \rangle < 0\). Now, let \(z^{(i)} \in B^{(i)}(\bar{p})\) and put \(y^{(i)}_{\theta,1} = (1 - \theta)(\bar{x}^{(i)} + h) + \theta z^{(i)}\) and \(y^{(i)}_{\theta,2} = (1 - \theta)(\bar{x}^{(i)} + h) + \theta x^{(i)}\) for all \(\theta \in (0, 1)\). Then, we have

\[
\langle T^{(i)}, x^{(i)} - y^{(i)}_{\theta,1} \rangle = -(1 - \theta)\langle T^{(i)}, h \rangle > 0
\]

and, taking (3) into account,

\[
\langle T^{(i)}, y^{(i)}_{\theta,1} - \bar{x}^{(i)} \rangle \geq 0
\]

for all \(\theta \in (0, 1)\). Adding side to side the above inequality, we obtain:

\[
0 < \langle T^{(i)}, y^{(i)}_{\theta,1} - y^{(i)}_{\theta,2} \rangle = \langle T^{(i)}, z^{(i)} - \bar{x}^{(i)} \rangle \leq (-u_i)\varphi(\bar{x}^{(i)}, z^{(i)} - \bar{x}^{(i)}).
\]

From the above inequality and Proposition 6, it follows \(u_i(\bar{x}^{(i)}) \geq u_i(z^{(i)})\). From the arbitrariness of \(z^{(i)} \in B^{(i)}(\bar{p})\), condition (1a) of Problem 1 follows. \(\square\)

Remark 8. Under the assumptions of Theorem 7, condition (1b) actually holds as equality. Indeed, fix \(i \in I\) and define

\[
g_i(x^{(i)}) := -\sum_{h \in H} p_h(x^{(i)}_h - \omega_h^{(i)}) \quad \text{for all } x^{(i)} \in B^{(i)}(\bar{p}).
\] (4)
We claim that \(g_i(\bar{x}^{(i)}) = 0 \). Indeed, if not, taking in mind that \(\bar{x}_i \in \mathcal{B}^{(i)}(\bar{p}, \bar{y}) \), it should be \(g_i(\bar{x}^{(i)}) > 0 \). Then, for each \(h = 1, \ldots, l \), there exists \(\rho_h > 0 \) such that

\[
\bar{x}(\rho) := (\bar{x}^{(1)}, \ldots, \bar{x}^{(i-1)}, \bar{x}^{(i)} + \rho \bar{y}_h, \bar{x}^{(i+1)}, \ldots, \bar{x}^{(n)}) \in \mathcal{B}(\bar{p}) \text{ for all } \rho \in [0, \rho_h].
\]

(5)

Testing (2) with \((\bar{p}, \bar{x}(\rho))\), we obtain

\[
\rho \langle \bar{T}^{(i)}, \bar{i}_h \rangle \leq 0, \text{ for all } \rho \in [0, \rho_h].
\]

(6)

Thus, in view of Assumption 4.d, it must be \(\bar{x}^{(i)}_h > 0 \) for all \(h \in \mathcal{H} \). This fact, together with \(g_i(\bar{x}^{(i)}) > 0 \), implies \(\bar{x}^{(i)} \in \text{int}(\mathcal{B}^{(i)}(\bar{p})) \). Testing (2) with \((\bar{p}, x)\), where \(x = (\bar{x}^{(1)}, \ldots, \bar{x}^{(i-1)}, \bar{x}^{(i)}, \bar{x}^{(i+1)}, \ldots, \bar{x}^{(n)}) \), being \(x^{(i)} \) arbitrarily chosen in \(\mathcal{B}^{(i)}(\bar{p}) \), we obtain \(\langle \bar{T}^{(i)}, x^{(i)} - \bar{x}^{(i)} \rangle \leq 0 \) for all \(x^{(i)} \in \mathcal{B}^{(i)}(\bar{p}) \). Since \(\bar{x}^{(i)} \in \text{int}(\mathcal{B}^{(i)}(\bar{p})) \), from this inequality it follows \(T^{(i)} = \theta_{\mathbb{R}^l} \) in contradiction with Assumption 4.d.

4 Existence Results

Theorem 7 in Section 3 states that any solution to Problem 2 is a solution to Problem 1. Thus, to find a solution of Problem 1, we will prove, in this Section, that Problem 2 admits at least a solution.

First, we need the following Proposition:

Proposition 9. For any \(i \in \mathcal{I} \), the map \(\partial^o(-u_i) : \mathbb{R}_+^\ell \to 2^{\mathbb{R}^\ell} \) has closed graph.

Proof. Fix \(i \in \mathcal{I} \). Let \((x^{(i)}, T^{(i)}) \in \mathbb{R}_+^\ell \times \mathbb{R}^\ell \) and let \(\{(x^{(m)}, T^{(m)})\} \) be a sequence in \(\text{gr}(\partial^o(-u_i)) \subset \mathbb{R}_+^\ell \times \mathbb{R}^\ell \) such that \((x^{(m)}, T^{(m)}) \to (x^{(i)}, T^{(i)}) \in \mathbb{R}_+^\ell \times \mathbb{R}^\ell \), as \(m \to +\infty \). Clearly, one has \((x^{(i)}, T^{(i)}) \in \mathbb{R}_+^\ell \times \mathbb{R}^\ell \). It remains to show that

\[
(x^{(i)}, T^{(i)}) \in \text{gr}(\partial^o(-u_i)).
\]

(7)

Fix \(z^{(i)} \in \mathbb{R}^\ell \). From \((x^{(m)}, T^{(m)}) \in \text{gr}(\partial^o(-u_i)(x^{(m)}, z^{(i)})) \), for all \(m \in \mathbb{N} \), one has \(\langle T^{(m)}, z^{(i)} \rangle \leq \langle -u_i \rangle^o(x^{(m)}, z^{(i)}) \), for all \(m \in \mathbb{N} \). Then,

\[
\langle T^{(i)}, z^{(i)} \rangle = \lim_{m \to +\infty} \langle T^{(m)}, z^{(i)} \rangle = \lim_{m \to +\infty} \langle T^{(m)}, z^{(i)} \rangle \leq \lim_{m \to +\infty} \langle -u_i \rangle^o(x^{(m)}, z^{(i)}).
\]

(8)

We claim that

\[
\lim_{m \to +\infty} \langle -u_i \rangle^o(x^{(m)}, z^{(i)}) \leq \langle -u_i \rangle^o(x^{(i)}, z^{(i)}).
\]

(9)
Indeed, assume that (9) does not hold. Then, it should exist \(m \in \mathbb{N} \) and \(M \in \mathbb{R} \) such that

\[
(-u_i) \circ (x^{(m)}, z^{(i)}) > M > (-u_i) \circ (x^{(i)}, z^{(i)}),
\]

(10)

for all \(m \in \mathbb{N} \), with \(m \geq m \). From (10), for each fixed \(m \in \mathbb{N} \), with \(m \geq m \), we can find a sequence \((y_k^{(m)}, t_k^{(m)}) \in A \times \mathbb{R}_+\), where \(A \) is as in Assumptions 4.a and 4.b, such that \((y_k^{(m)}, t_k^{(m)}) \to (x^{(m)}, 0)\) as \(k \to +\infty \), and

\[
\frac{(-u_i)(y_k^{(m)} + t_k^{(m)} z^{(i)}) - (-u_i)(y_k^{(m)})}{t_k^{(m)}} > M,
\]

for all \(k \in \mathbb{N} \). Moreover, again from (10), we can find \(\delta > 0 \) such that

\[
\frac{(-u_i)(y^{(i)} + tz^{(i)}) - (-u_i)(y^{(i)})}{t} < M,
\]

for all \(y^{(i)} \in A \), with \(|y^{(i)} - x^{(i)}| < \delta\), and all \(t \in]0, \delta[\). Thus, if we fix \(m \in \mathbb{N} \), with \(m \geq m \), such that \(|x^{(m)} - x^{(i)}| < \delta\), we can find \(k' \in \mathbb{N} \) such that \(|y_k^{(m)} - x^{(i)}| < \delta\) and \(t_k^{(m)} \in]0, \delta[\). Then, the couple \((y_k^{(m)}, t_k^{(m)})\) should satisfy

\[
\frac{(-u_i)(y_k^{(m)} + t_k^{(m)} z^{(i)}) - (-u_i)(y_k^{(m)})}{t_k^{(m)}} < M < \frac{(-u_i)(y_k^{(m)} + t_k^{(m)} z^{(i)}) - (-u_i)(y_k^{(m)})}{t_k^{(m)}},
\]

a contradiction. Therefore, inequality (9) holds. At this point, observe that from inequalities (4) and (9) it easily follows that \((x^{(i)}, T^{(i)}) \in \text{gr}(\partial^o(-u_i))\). \(\square \)

Theorem 10. Let Assumptions 2, 4.a, 4.c, 4.d be satisfied. Then, Problem 2 admits at least a solution in \(P \times C \times Y \), where

\[
C := \left\{ x = \left(x_h^{(i)} \right)_{i \in I, h \in H} \in \mathbb{R}_+^{n \times \ell} : \sum_{i \in I} \sum_{h \in H} x_h^{(i)} \leq \sum_{i \in I} \sum_{h \in H} \omega_h^{(i)} \right\}.
\]

Proof. Let us divide the proof in several steps.

Step 1. Put \(X = P \times \mathbb{R}_+^{n \times \ell} \) and define
- \(u(x) = (u_1(x^{(1)}),..., u_n(x^{(n)})) \), for all \(x = (x^{(1)},..., x^{(n)}) \in \mathbb{R}_+^{n \times \ell} \),
- \(\Gamma(p, x) = P \times B(p) \), for all \((p, x) \in X\),
- \(\Phi(p, x) = (\sum_{i \in I} (x^{(i)} - \omega^{(i)}), \partial^o(-u)(x)) \), for all \((p, x) \in X\), where \(\partial^o(-u)(x) = (\partial^o(-u_1)(x^{(1)}),..., \partial^o(-u_n)(x^{(n)})) \), for all \(x \in \mathbb{R}_+^{n \times \ell} \).
By means of these notations, we can rewrite Problem 2 and the variational inequality (2) as follows:

Problem 2 bis. find \((\bar{p}, \bar{x})\) s.t. \((\bar{p}, \bar{x}) \in \Gamma(\bar{p}, \bar{x})\), and \((\hat{z}, T) \in \Phi(\bar{p}, \bar{x})\) such that

\[
\langle (\hat{z}, T), (\bar{p}, \bar{x}) - (p, x) \rangle \leq 0, \quad \text{for all } (p, x) \in \Gamma(\bar{p}, \bar{x}).
\]

\((11)\)

Step 2. Note that:

- the set \(X\) is nonempty closed and convex in \(\mathbb{R}^\ell \times \mathbb{R}^{n+\ell}\);
- the set \(K := P \times C \subset X\) is nonempty and compact in \(\mathbb{R}^\ell \times \mathbb{R}^{n+\ell}\);
- \(\Gamma(p, x)\) is a nonempty convex subset of \(X\), for all \((p, x) \in X\).

Moreover, recalling that \(\partial^i(-u_i)(x^{(i)})\) is (nonempty) convex and compact in \(\mathbb{R}^\ell\), for all \(i \in I\) and for all \(x^{(i)} \in \mathbb{R}^\ell_+\), we also have that

- \(\Phi(p, x)\) is a nonempty convex and compact subset of \(\mathbb{R}^\ell \times \mathbb{R}^{n+\ell}\), for all \((p, x) \in X\).

In the next steps we check the conditions of Theorem 3.2 of [8]6.

Step 3. Prove that the below condition holds true:

\[
(a_1) \quad \text{the set } \Lambda(\rho, \tau) := \left\{ (p, x) \in X : \inf_{(z, T) \in \Phi(p, x)} \langle (z, T), (\rho, \tau) \rangle \leq 0 \right\} \quad \text{is closed,}
\]

for each \((\rho, \tau) \in X - X\).

6 For convenience of reader we report below the following

Theorem 3.2 (of [8]). Let \(X\) be a closed convex subset of \(\mathbb{R}^n\), \(K \subseteq X\) a nonempty compact set, \(\Phi : X \to 2^{\mathbb{R}^n}\) and \(\Gamma : X \to 2^X\) two multifunctions. Assume that:

(i) the set \(\Phi(x)\) is convex for each \(x \in K\), with \(x \in \Gamma(x)\);

(ii) the set \(\Phi(x)\) is nonempty and compact for each \(x \in X\);

(iii) for each \(y \in X - X\), the set \(\{ x \in X : \inf_{z \in \Phi(x)} \langle z, y \rangle \leq 0 \} \) is closed;

(iv) \(\Gamma\) is a lower semicontinuous multifunction (i.e. \(\{ x \in X : \Gamma(x) \cap A \neq \emptyset \} \) is open in \(X\), for each open set \(A \) in \(X\)) with closed graph and convex values.

Moreover, assume that there exists an increasing sequence \(\epsilon_k\) of positive real numbers, with \(X \cap B(0, \epsilon_1) \neq \emptyset\) and \(\lim_{k \to \infty} \epsilon_k = +\infty\) such that, if one puts \(D_k = B(0, \epsilon_k)\), for each \(k \in \mathbb{N}\) one has:

(v) \(\Gamma(x) \cap D_k \neq \emptyset\), for all \(x \in X \cap D_k\);

(vi) \(\sup_{y \in \Gamma(x) \cap D_k} \inf_{z \in \Phi(x)} \langle z, x - y \rangle > 0\), for each \(x \in (X \cap D_k) \setminus K\), with \(x \in \Gamma(x)\).

Then, there exists at least one solution to GQVI\((X, \Gamma, \Phi)\) belonging to \(K \times \mathbb{R}^n\).
Fix \((\rho, \tau) \in X - X\) and let \(\{(p^k, x_k)\}\) be a sequence in \(\Lambda(\rho, \tau)\) such that \((p^k, x_k) \to (p^*, x_*)\) as \(k \to \infty\). Let us to show that \((p^*, x_*) \in \Lambda(\rho, \tau)\). At first observe that, since \(X\) is closed, one has \((p^*, x_*) \in X\). Moreover, since \(\Phi(p^k, x_k)\) is compact for each \(k \in \mathbb{N}\), and the function \((z, T) \in \mathbb{R}^\ell \times \mathbb{R}^{n \times \ell} \to \langle (z, T), (\rho, \tau) \rangle\) is continuous in \(\mathbb{R}^\ell \times \mathbb{R}^{n \times \ell}\), then, for each \(k \in \mathbb{N}\), we can find \((z_k^k, T_k) \in \Phi(p^k, x_k)\) such that
\[
\langle (z_k^k, T_k), (\rho, \tau) \rangle \leq 0.
\] (12)

Note that, from the definition of \(\Phi\), for each \(k \in \mathbb{N}\), one has:
\[
z^k = -\sum_{i \in I} (x_k^{(i)} - \omega^{(i)}); \quad T_k \in \partial(-u)(x_k).
\] (13)

(14)

Moreover, in force of Assumption 4.a, then, for each \(k \in \mathbb{N}\), there exist an open neighborhood \(A_k\) of \(x_k\) in \(\mathbb{R}^{n \times \ell}\), and a constant \(L_k \geq 0\) such that:
\[
\sup_{T \in \partial(-u)(x_k)} |T| \leq L_k, \quad \text{for each } x \in A_k \cap \mathbb{R}^{n \times \ell}.
\] (15)

Furthermore, there exist an open neighborhood \(A_0\) of \(x_*\) in \(\mathbb{R}^{n \times \ell}\), and a constant \(L_0 \geq 0\) such that
\[
\sup_{T \in \partial(-u)(x_*)} |T| \leq L_0, \quad \text{for each } x \in A_0 \cap \mathbb{R}^{n \times \ell}.
\] (16)

At this point, observe that the family of open sets \(\{A_k\}_{k \in \mathbb{N} \cup \{0\}}\) is a covering of the compact set \(\{x_k\}_{k \in \mathbb{N}} \cup \{x_*\}\). Therefore, from (15) and (16), we infer that there exists a constant \(L \geq 0\) such that
\[
\sup_{T \in \partial(-u)(x_k)} |T| \leq L, \quad \text{for each } k \in \mathbb{N}.
\]

Consequently, from (14), up to a subsequence, we can suppose that the sequence \(\{T_k\}_{k \in \mathbb{N}}\) converges to some \(T_* \in \mathbb{R}^{n \times \ell}\). Now, from (13), we infer that
\[
z^k \to z_* := -\sum_{i \in I} (x_*^{(i)} - \omega^{(i)}), \quad \text{as } k \to \infty;
\] (17)

and, from Proposition 9 and (14), we also infer that
\[
T_* \in \partial(-u)(x_*).
\] (18)

Furthermore, from (12), passing to the limit as \(k \to \infty\), one has
\[
\langle (z^*, T_*), (\rho, \tau) \rangle \leq 0.
\] (19)

At this point, observe that conditions (17) and (18) mean that \((z^*, T_*) \in \Phi(p^*, x_*)\) and this latter condition, together with (19), gives \((p^*, x_*) \in \Lambda(\rho, \tau)\). Therefore, condition \((a_1)\) is proved.

Step 4. Now, let us to show that the below condition holds true
(a2) the map $\Gamma : X \to 2^X$ is lower semicontinuous with closed graph;

To this end, it is sufficient to prove that for every $(p^0, x_0) \in X$, every $(p, x) \in \Gamma(p^0, x_0)$, and every sequence $\{(p^k, \hat{x}_k)\}$ in X such that $(\hat{p}^k, \hat{x}_k) \to (p^0, x_0)$ as $k \to +\infty$, there exists a sequence $\{(p^k, x_k)\}$ in X such that $(p^k, x_k) \in \Gamma(\hat{p}^k, \hat{x}_k)$ for all $k \in \mathbb{N}$, and $(p^k, x_k) \to (p, x)$ as $k \to +\infty$ (see [5] at page 39, for instance).

So, let $(p^0, x_0), (p, x)$ and $\{(\hat{p}^k, \hat{x}_k)\}$ be as above. For each $i \in I$, using the fact that $(p, x) \in \Gamma(p^0, x_0)$, we have the following two situations:

either

$$\langle p^0, x^{(i)} \rangle < \langle p^0, \omega^{(i)} \rangle,$$

(20)

or

$$\langle p^0, x^{(i)} \rangle = \langle p^0, \omega^{(i)} \rangle.$$

(21)

Suppose that (20) holds. Then, since $\hat{p}^k \to p^0$, there exists $k_0 \in \mathbb{N}$ such that $\langle \hat{p}^k, x^{(i)} \rangle < \langle \hat{p}^k, \omega^{(i)} \rangle$, for all $k \in \mathbb{N}$, with $k \geq k_0$. So, in this case, if we put $x_k^{(i)} = x^{(i)}$ for $k \geq k_0$, and $x_k^{(i)} = 0$ for $k = 1, \ldots, k_0 - 1$, it is easy to check that $x_k^{(i)} \in \mathcal{B}^{(i)}(\hat{p}^k)$, for all $k \in \mathbb{N}$. Moreover, it is clear that $x_k^{(i)} \to x^{(i)}$ as $k \to +\infty$.

Suppose that (21) holds. Then, from the Assumption 2, we have $\langle p^0, x^{(i)} \rangle = \langle p^0, \omega^{(i)} \rangle > 0$. Consequently, since $\hat{p}^k \to p^0$, we have

$$\lim_{k \to \infty} \frac{\langle \hat{p}^k, \omega^{(i)} \rangle}{\langle \hat{p}^k, x^{(i)} \rangle} = \frac{\langle p^0, \omega^{(i)} \rangle}{\langle p^0, x^{(i)} \rangle} = 1.$$

Therefore, if we put $a_k = \max \left\{0, 1 - \frac{\langle \hat{p}^k, \omega^{(i)} \rangle}{\langle \hat{p}^k, x^{(i)} \rangle}\right\}$, for all $k \in \mathbb{N}$, and $x_k^{(i)} = (1 - a_k)x^{(i)}$ for all $k \in \mathbb{N}$, it is easy to check that $x_k^{(i)} \in \mathcal{B}^{(i)}(\hat{p}^k)$, for all $k \in \mathbb{N}$, and that $x_k^{(i)} \to x^{(i)}$ as $k \to +\infty$.

So, for each $i \in I$, in both cases (20) and (21), we can find a sequence $x_k^{(i)}$ which converges to $x^{(i)}$ and such that $x_k^{(i)} \in \mathcal{B}^{(i)}(\hat{p}^k)$, for all $k \in \mathbb{N}$. Consequently, if we put $x_k = (x_k^{(1)}, \ldots, x_k^{(n)})$, for all $k \in \mathbb{N}$, the sequence $\{(p^k, x_k)\}$, where $p^k = p$, for all $k \in \mathbb{N}$, satisfies $(p^k, x_k) \in \Gamma(\hat{p}^k, \hat{x}_k)$ for all $k \in \mathbb{N}$, and $(p^k, x_k) \to (p, x)$ as $k \to +\infty$, as desired. Therefore, Γ is lower semicontinuous in X.

To show condition (a2) holds true, it remains to prove that Γ has closed graph. To this end, let $\{(\hat{p}^k, \hat{x}_k)\}$ and $\{(p^k, x_k)\}$ be two sequences in X such that $(p^k, x_k) \in \Gamma(\hat{p}^k, \hat{x}_k)$, for all $k \in \mathbb{N}$, and suppose that $(\hat{p}^k, \hat{x}_k) \to (p^0, x_0)$, $(p^k, x_k) \to (p, x)$, as $k \to \infty$. Let us to show that $(p, x) \in \Gamma(p^0, x_0)$.
Since P is closed, one has $p \in P$. Moreover, being $(p^k, x_k) \in \Gamma(\hat{p}^k, \hat{x}_k)$ for all $k \in \mathbb{N}$, one has $\langle p^k, x_k \rangle \leq \langle \hat{p}^k, \omega^i \rangle$, for all $k \in \mathbb{N}$, and $i \in I$. Passing to the limit as $k \to \infty$, we obtain $\langle p^0, x^{(i)} \rangle \leq \langle p^0, \omega^i \rangle$, for all $i \in I$. Thus, $x \in B(p^0)$ which, together $p \in P$, gives $(p, x) \in \Gamma(p^0, x^0)$, as desired.

Step 5. It remains to show that condition

(a3) there exists R_0 such that, if for each $R \in [R_0, \infty[$ one has $\overline{B}_R(0) \cap X \neq \emptyset$, and:

(i) $\Gamma(p, x) \cap \overline{B}_R(0) \neq \emptyset$, for all $(p, x) \in X \cap \overline{B}_R(0);

(ii) $\sup_{(p', x') \in \Gamma(p, x) \cap \overline{B}_R(0)} \inf_{(z, T) \in \Phi(p, x)} \langle (z, T), (p, x) - (p', x') \rangle > 0$,

for all $(p, x) \in X \cap \overline{B}_R(0) \setminus K$, with $(p, x) \in \Gamma(p, x)$.

holds true as well.

Let $R_0 > 0$ be such that $\overline{B}_{R_0}(0) \subset \mathbb{R}^n \times \mathbb{R}^{n \times \ell}$ contains the compact set K. Then, for each $R \in [R_0, \infty[$, one $K \subset X \cap \overline{B}_R(0)$ and $P \times \{0\} \subset \Gamma(p, x) \cap \overline{B}_R(0)$, for all $(p, x) \in X$. Therefore, condition (i) of (a3) holds. Suppose that condition (ii) of (a3) does not hold. Then, it should exist $(\bar{p}, \bar{x}) \in X \cap \overline{B}_{R_0}(0) \setminus K$, with $(\bar{p}, \bar{x}) \in \Gamma(\bar{p}, \bar{x})$, such that:

$$\inf_{(z, T) \in \Phi(\bar{p}, \bar{x})} \langle (z, T), (\bar{p}, \bar{x}) - (p', x') \rangle \leq 0, \text{ for all } (p', x') \in \Gamma(\bar{p}, \bar{x}) \cap \overline{B}_{R_0}(0). \quad (22)$$

Now, let us put $p^* := (1/l, ..., 1/l) \in P$. Then, $(p^*, \bar{x}) \in \overline{B}_{R_0}(0) \cap X$. Moreover, from $(\bar{p}, \bar{x}) \in \Gamma(\bar{p}, \bar{x})$, it trivially follows $(p^*, \bar{x}) \in \Gamma(\bar{p}, \bar{x})$. Thus, we can test (22) with $(p', x') = (p^*, \bar{x})$. Doing so, we get $\inf_{(z, T) \in \Phi(\bar{p}, \bar{x})} \langle (z, T), (\bar{p} - p^*, 0) \rangle \leq 0$. Therefore, being $\Phi(\bar{p}, \bar{x})$ a compact set, it should exist $(\bar{z}, \bar{T}) \in \Phi(\bar{p}, \bar{x})$ such that $\langle (\bar{z}, \bar{T}), (\bar{p} - p^*, 0) \rangle \leq 0$. From the definition of Φ, the previous inequality is equivalent to

$$\left\langle \sum_{i \in I} \left(\bar{x}^{(i)} - \omega^{(i)} \right), p^* - \bar{p} \right\rangle \leq 0 \implies \left\langle \sum_{i \in I} \left(\bar{x}^{(i)} - \omega^{(i)} \right), p^* \right\rangle \leq 0$$

taking in mind that $\bar{x} \in B(\bar{p})$. Consequently,

$$\sum_{i \in I} \sum_{h \in H} \left(\bar{x}_h^{(i)} - \omega_h^{(i)} \right) = \ell \left\langle \sum_{i \in I} \left(\bar{x}^{(i)} - \omega^{(i)} \right), p^* \right\rangle \leq 0.$$

Therefore, $\bar{x} \in C$. But this contradicts the fact that $(\bar{p}, \bar{x}) \in X \cap \overline{B}_{R_0}(0) \setminus K = (P \times \mathbb{R}^{n \times \ell}_+) \cap \overline{B}_{R_0}(0) \setminus (P \times C)$.

\square
GQVIs for competitive equilibrium problem

References

[12] F. Rania, On a competitive economic equilibrium referred to a continuous
http://dx.doi.org/10.12988/ams.2013.38433

nomic equilibria, Chapter in *Network Optimization Problems: Algorithms,
Applications and Complexity*, D.Z. Du, P.M. Pardalos eds., World Scien-
http://dx.doi.org/10.1142/9789812798190_0019

Received: December 30, 2015; Published: February 5, 2016