Characterization of Real Hypersurface with Anti-derivatives of Structure Lie Operator in a Complex Space Form

Dong Ho Lim

Department of Mathematics Education, Sehan University
Jeollanam-do, 526-702, Republic of Korea

Copyright © 2016 Dong Ho Lim. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we investigate the real hypersurfaces on holomorphic distribution D in a complex space form $M_n(c)$, $c \neq 0$ under the condition that $(\mathcal{L}_\xi \mathcal{L}_\xi)X + (\nabla_\xi \mathcal{L}_\xi)X = 0$, where \mathcal{L}_ξ denote the structure Lie operator of M in $M_n(c)$.

Mathematics Subject Classification: Primary 53C40; Secondary 53C15

Keywords: real hypersurface, Structure Lie operator, Lie derivative, Hopf hypersurfaces, Covariant derivative, model space of type A

1 Introduction

A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. As is well-known, a complete and simply connected complex space form is complex analytically isometric to a complex projective space $P_n\mathbb{C}$, a complex Euclidean space \mathbb{C}^n or a complex hyperbolic space $H_n\mathbb{C}$, according to $c > 0$, $c = 0$ or $c < 0$.

In this paper we consider a real hypersurface M in a complex space form $M_n(c)$, $c \neq 0$. Then M has an almost contact metric structure (ϕ, g, ξ, η) induced from the Kaehler metric and complex structure J on $M_n(c)$. The
Reeb vector field ξ is said to be principal if $A\xi = \alpha \xi$ is satisfied, where A is the shape operator of M and $\alpha = \eta(A\xi)$. In this case, it is known that α is locally constant ([4]) and that M is called a Hopf hypersurface.

R. Takagi [15] completely classified homogeneous real hypersurfaces in such hypersurfaces as six model spaces A_1, A_2, B, C, D and E. Berndt [1] classified all homogeneous Hopf hypersurfaces in $H_n\mathbb{C}$ as four model spaces which are said to be A_0, A_1, A_2 and B. A real hypersurface of A_1 or A_2 in $P_n\mathbb{C}$ or A_0, A_1, A_2 in $H_n\mathbb{C}$, then M is said to be a type A for simplicity.

As a typical characterization of real hypersurfaces of type A, the following is due to Okumura [14] for $c > 0$ and Montiel and Romero [11] for $c < 0$.

Theorem 1 ([11, 14]) Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. It satisfies $A\phi - \phi A = 0$ on M if and only if M is locally congruent to one of the model spaces of type A.

The induced operator L_ξ on real hypersurface M from the 2-form $L_\xi g$ is defined by $(L_\xi g)(X, Y) = g(L_\xi X, Y)$ for any vector field X and Y on M, where L_ξ denotes the operator of the Lie derivative with respect to the structure vector field ξ. This operator L_ξ is given

$$L_\xi = \phi A - A\phi$$

on M, and call it structure Lie operator of M. One of the most interesting problems in the study of real hypersurfaces M in $M_n(c)$ is to investigate a geometric characterization of these model spaces. Recently, some works have studied several conditions on the structure Lie operator L_ξ and given some results on the classification of real hypersurfaces of type A in $M_n(c)$ ([6], [7] and [8] etc).

The Lie derivative of the shape operator, Ricci operator and Jacobi operator was investigated by Ki et al. [5], Kimura and Maeda [3], Perez et al [2]. As for the Lie derivative of structure Lie operator, Loo [10] obtained the following:

Theorem 2 ([10]) Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. It satisfies $L_\xi (\phi A - A\phi) = 0$ on M if and only if M is locally congruent to one of the model spaces of type A.

In the differential geometry, the study of real hypersurfaces whose operator is parallel is a problem of great importance. M. Ortega [13] has proved the nonexistence of real hypersurfaces in nonflat complex form with parallel structure Jacobi operator. Recently, Lim et al. ([8], [9]) has proved the following.

Theorem 3 ([8]) Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. Then M satisfies $(\nabla_\xi L_\xi)X = (\nabla_\xi L_\xi)X$ if and only if M is locally congruent to one of the model spaces of type A.
Theorem 4 ([8]) Let M be a real hypersurface of $M_n(c_e), \ c \neq 0, \ n \geq 2$. Then M satisfies $(\mathcal{L}_\xi L_\xi)X + (\nabla_\xi L_\xi)X = 0$ if and only if M is locally congruent to one of the model spaces of type A.

The holomorphic distribution D of real hypersurface M in $M_n(c_e)$ is defined by

$$D = \{X \in T_P(M)|g(X, \xi) = 0\}$$ (1)

In this paper, we shall study geometric characterizations of real hypersurfaces M on holomorphic distribution D in a non-flat complex space form $M_n(c_e)$ with Lie ξ-parallel and ξ-parallel of structure Lie operator. More specifically, we prove the following:

Main Theorem Let M be a real hypersurface in a complex space form $M_n(c_e), \ c \neq 0$. Then M satisfies $(\mathcal{L}_\xi L_\xi)X = (\nabla_\xi L_\xi)X$ on D in $M_n(c_e)$ if and only if M is locally congruent to one of the model space of type A.

All manifolds in the present paper are assumed to be connected and of class C^∞ and the real hypersurfaces supposed to be oriented.

2 Preliminaries

Let M be a real hypersurface immersed in a complex space form $M_n(c_e)$, and N be a unit normal vector field of M. By ∇ we denote the Levi-Civita connection with respect to the Fubini-Study metric tensor \tilde{g} of $M_n(c_e)$. Then the Gauss and Weingarten formulas are given respectively by

$$\tilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)N, \quad \tilde{\nabla}_X N = -AX$$

for any vector fields X and Y tangent to M, where g denotes the Riemannian metric tensor of M induced from \tilde{g}, and A is the shape operator of M in $M_n(c_e)$. For any vector field X on M we put

$$JX = \phi X + \eta(X)N, \quad JN = -\xi,$$

where J is the almost complex structure of $M_n(c_e)$. Then we see that M induces an almost contact metric structure (ϕ, g, ξ, η), that is,

$$\phi^2X = -X + \eta(X)\xi, \quad \phi \xi = 0, \quad \eta(\xi) = 1,$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi)$$ (2)

for any vector fields X and Y on M. Since the almost complex structure J is parallel, we can verify from the Gauss and Weingarten formulas the followings:
\[\nabla_X \xi = \phi AX, \]
\[(\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi. \]

Since the ambient manifold is of constant holomorphic sectional curvature \(c \), we have the following Gauss and Codazzi equations respectively:

\[R(X, Y)Z = \frac{c}{4} \{ g(Y, Z)X - g(X, Z)Y + g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y \]
\[-2g(\phi X, Y)\phi Z \} + g(AY, Z)AX - g(AX, Z)AY, \]
\[(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \{ \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi \} \]

By use of (2.1), we have \((\mathcal{L}_\xi g)(X, Y) = g((\phi A - A\phi)X, Y)\) for any vector fields \(X \) and \(Y \) on \(M \), and hence the induced operator \(L_\xi \) from \(\mathcal{L}_\xi g \) is given by

\[L_\xi X = (\phi A - A\phi)X. \]

\[(\mathcal{L}_\xi L_\xi)X = [\xi, L_\xi X] - L_\xi [\xi, X] \]

for any vector fields \(X, Y \) and \(Z \) on \(M \), where \(R \) denotes the Riemannian curvature tensor of \(M \).

Let \(W \) be a unit vector field on \(M \) with the same direction of the vector field \(-\phi \nabla_\xi \xi \), and let \(\mu \) be the length of the vector field \(-\phi \nabla_\xi \xi \) if it does not vanish, and zero (constant function) if it vanishes. Then it is easily seen from (1) that

\[A\xi = \alpha \xi + \mu W, \]

where \(\alpha = \eta(A\xi) \). We notice here that \(W \) is orthogonal to \(\xi \).

We put

\[\Omega = \{ p \in M \mid \mu(p) \neq 0 \}. \]

Then \(\Omega \) is an open subset of \(M \).
3 Some Lemmas

In this section, we prepare without proof the following Lemma 3.1, 3.2 and shall prove Lemma 3.3.

Lemma 3.1 If ξ is a principal curvature vector and the corresponding principal curvature α is locally constant.

Lemma 3.2 Assume that ξ is a principal curvature vector and the corresponding principal is α. Then we have

$$A\phi A - \frac{\alpha}{2} (A\phi + \phi A) - \frac{c}{2} = 0.$$ \hfill (10)

Lemma 3.3. Let M be a real hypersurface satisfying $(L_\xi L_\xi)X + (\nabla_\xi L_\xi)X = 0$ on holomorphic distribution D in a complex space form $M_n(c)$, $c \neq 0$. Then M is a Hopf hypersurface in $M_n(c)$.

Proof. Let M be a real hypersurfaces in a complex space form $M_n(c)$, $c \neq 0$, satisfying $(L_\xi L_\xi)X + (\nabla_\xi L_\xi)X = 0$. We assume that the open set Ω given in (8) is not empty. Then the above condition together with (2) and (7) implies that

$$2(\nabla_\xi L_\xi)X = -\phi A^2\phi X - A^2X + \alpha \eta(AX)\xi + \mu \eta(AX)W$$

for any vector field X on D. Since we have $(\nabla_\xi L_\xi)X = \nabla_\xi(L_\xi X) - L_\xi(\nabla_\xi X)$, we see from the equation above that

$$2\{\phi(\nabla_\xi A)X-(\nabla_\xi A)\phi X\} = -\phi A^2\phi X - A^2X - 3\eta(AX)A\xi + 2\{\eta(X)A^2\xi + \eta(A^2X)\xi\}. \hfill (11)$$

If we apply Codazzi equation of (6) to $\phi(\nabla_\xi A)X$, then we obtain

$$\phi(\nabla_\xi A)X = \mu \phi \nabla X W - \phi A\phi AX + \alpha\{-AX + \eta(AX)\xi\} + \frac{\phi}{2}\{-X + \eta(X)\xi\} + (X\mu)\phi W. \hfill (12)$$

As a similar argument as the above, we can also verify from $(\nabla_\xi A)\phi X$ that

$$(\nabla_\xi A)\phi X = \mu \nabla X W - A\phi A\phi X + \alpha \phi A\phi X + ((\phi X)\alpha)\xi$$

$$+ (X\mu)W + \frac{\phi}{2}\{-X + \eta(X)\xi\}. \hfill (13)$$

If we substitute (12) and (13) into (11), then we can verify that

$$2\mu\{\phi \nabla X W - \nabla \phi X W\} = \{\phi A\phi A - A\phi A\phi\}X + 2\alpha\{A + \phi A\phi\}X$$

$$-\{\phi A^2\phi + A^2\}X + 2\eta(X)A^2\xi + \{2((\phi X)\alpha) - 5\alpha \eta(AX) + 2\eta(A^2X)\}\xi$$

$$+ \{2((\phi X)\mu) - 3\mu \eta(AX)\}W - 2(X\mu)\phi W. \hfill (14)$$
for any vector field X on D. If we put $X = W$ into (14) and make use of (2) and (8), then we get
\[
2\mu \{ \phi \nabla W - \nabla_{\phi W} W \} = 2(\phi A\phi A - A\phi A\phi)W + 2\alpha(A + \phi A\phi)W \\
- (\phi A^2\phi + A^2)W + \{ 2((\phi W)\alpha) - 3\alpha\mu + 2\mu\gamma \} \xi \\
+ \{ 2((\phi W)\mu) - 3\mu^2 \} W - 2(W\mu)\phi W
\] (15)
where the smooth function γ is defined by $\gamma = g(AW, W)$. Putting $X = \phi W$ into (14) and using (2) and (8), we obtain
\[
2\mu \{ \phi \nabla_{\phi W} W + \nabla_W W \} = 2\{ \phi A\phi A + A\phi A \} W \\
+ 2\alpha \{ \phi A - \phi A \} W + \{ \phi A^2 - A^2 \phi \} W \\
+ 2\{ \mu g(AW,\phi W) - (W\alpha) \} \xi \\
- 2(W\mu)W - 2((\phi W)\mu)\phi W
\] (16)
If we apply ϕ to (16), then we have
\[
2\mu \{ \phi \nabla W W - \nabla_{\phi W} W \} = 2\{ \phi A\phi A - A\phi A\phi \} W + 2\alpha \{ \phi A\phi + A \} W \\
- \{ \phi A^2\phi + A^2 \} W - \{ 4\mu g(A\phi W,\phi W) + \alpha\mu - \mu\gamma \} \xi \\
+ 2((\phi W)\mu)W - 2(W\mu)\phi W.
\] (17)
Comparing this equation with (15) and (17), we can verify that
\[
\{ 2((\phi W)\alpha) - 2\alpha\mu + \mu\gamma + 4\mu g(A\phi W,\phi W) \} \xi = 3\mu^2 W.
\] (18)
If we take inner product of (18) with W then we obtain $\mu = 0$ and it is a contradiction. Thus the set Ω is empty, and hence M is a Hopf hypersurface.

4 Result of Main Theorem

We shall prove Main Theorem given in the introduction, that is, as the characterization of Hopf hypersurface: we can state:

Proof of Main Theorem By Lemma 3.3, M is a Hopf hypersurface in $M_n(c)$. Since ξ is a Reeb vector field, the assumption $(\mathcal{L}_\xi L_\xi)X + (\nabla_\xi L_\xi)X = 0$ is equivalent to
\[
2(\nabla_\xi L_\xi)X = \phi AL_\xi X + L_\xi \phi AX
\]
for any vector field X on D. Since we have $(\nabla_\xi L_\xi)X = \nabla_\xi (L_\xi X) - L_\xi (\nabla_\xi X)$ and make use of Codazzi equation, we see that the above equation is given by
\[
2\{ A\phi A\phi X - \phi A\phi AX \} + \phi A^2\phi X + A^2X - 2\alpha \{ AX + \phi AX \}
\]
\[- \alpha^2 \eta(X)\xi + 2((\phi X)\alpha)\xi
\] (19)
For any vector field X on D such that $AX = \lambda X$, it follows from (10) that

$$(\lambda - \frac{\alpha}{2})A\phi X = \frac{1}{2}(\alpha\lambda + \frac{c}{2})\phi X.$$

(20)

If $\lambda \neq \frac{\alpha}{2}$, then we see from (20) that ϕX is also a principal direction in D, say $A\phi X = \mu \phi X$. From (12), we have

$$(\lambda - \mu)(\lambda + \mu - 2\alpha) = 0.$$

(21)

If $\lambda = \mu$, then M has the two roots of the quadratic equation $\lambda^2 - 2\alpha\lambda - \frac{c}{4} = 0$ and hence $L_\xi X = (A\phi - \phi A)X = 0$ for any vector field X in D.

In the following, if $\lambda + \mu = 2\alpha$, then we can divide into two cases (I) $c = 4$, ($M_n(c) = P_n(c)$) (II) $c = -4$, ($M_n(c) = H_n(c)$).

(I) In the case of $c = 4$, by the equation of (20), M has the two roots of the quadratic equation $\lambda^2 - 2\alpha\lambda + (\alpha^2 + 1) = 0$. By the direct calculation, we know that the solution for the above equation does not exists.

(II) In the case of $c = -4$, from (20), M has the two principal curvatures of the quadratic equation $\lambda^2 - 2\alpha\lambda + \alpha^2 - 1 = 0$. Therefore M is locally congruent to one of model spaces of Takagi’s list and Montiel’s list. Since the model spaces B do not admit when angle $= 0$ (see [7], pp 259-261).

If $\lambda = \frac{\alpha}{2}$, it is easily seen that $A\phi X = \phi AX$ for any vector field X on D. Therefore, we have $L_\xi = \phi A - A\phi = 0$ on D and $L_\xi \xi = (\phi A - A\phi)\xi = 0$. Statement of Main Theorem follows immediately from Theorem 1.

Acknowledgements. This paper was supported by the Sehan University Research Fund in 2016.

References

Dong Ho Lim
Ookayama Univ,. 32 (1990), 207-221.

http://dx.doi.org/10.1007/s00605-013-0579-x

[8] D.H. Lim, On real hypersurfaces with derivative the condition of struc-
ture Lie operator in a nonflat complex space form, To Submit, Revista Matemaca Iberoamericana.

derivative and covariant derivative of structure Lie operator, To Submit.

[10] Tee-How Loo, Characterizations of real hypersurfaces in a complex space

http://dx.doi.org/10.1007/bf00164402

[12] R. Niebergall and P.J. Ryan, Real hypersurfaces in complex space forms,

[13] M. Ortega, J.D. Pérez and F.G. Santos, Non-existence of real hypersur-
faces with parallel structure Jacobi operator in a nonflat complex space
http://dx.doi.org/10.1216/rmj/1181069385

[14] M. Okumura, On some real hypersurfaces of a complex projective space,
http://dx.doi.org/10.1090/s0002-9947-1975-0377787-x

space, _Osaka J. Math._, 10 (1973), 495-506.

Received: August 4, 2016; _Published:_ September 19, 2016